F Nous contacter

0

Documents  CIRM | enregistrements trouvés : 905

O

-A +A

Sélection courante (0) : Tout sélectionner / Tout déselectionner

P Q

2 y

Research talks

Let $p$ be a prime number and $F$ be a non-archimedean field with finite residue class field of characteristic $p$. Understanding the category of Iwahori-Hecke modules for $SL_2(F)$ is of great interest in the study of $p$-modular smooth representations of $SL_2(F)$, as these modules naturally show up as spaces of invariant vectors under the action of the standard pro-$p$-Iwahori subgroup. In this talk, we will discuss a work in progress in which we aim to classify all non-trivial extensions between these modules and to compare them with their analogues for $p$-modular smooth representations of $SL_2(F)$ and with their Galois counterpart in the setting of the local Langlands correspondences in natural characteristic. Let $p$ be a prime number and $F$ be a non-archimedean field with finite residue class field of characteristic $p$. Understanding the category of Iwahori-Hecke modules for $SL_2(F)$ is of great interest in the study of $p$-modular smooth representations of $SL_2(F)$, as these modules naturally show up as spaces of invariant vectors under the action of the standard pro-$p$-Iwahori subgroup. In this talk, we will discuss a work in progress in ...

11F70 ; 11F85 ; 20C08 ; 20G05 ; 22E50

... Lire [+]

2 y

Research schools

Recently, an important research activity on mean field games (MFGs for short) has been initiated by the pioneering works of Lasry and Lions: it aims at studying the asymptotic behavior of stochastic differential games (Nash equilibria) as the number $n$ of agents tends to infinity. The field is now rapidly growing in several directions, including stochastic optimal control, analysis of PDEs, calculus of variations, numerical analysis and computing, and the potential applications to economics and social sciences are numerous.
In the limit when $n \to +\infty$, a given agent feels the presence of the others through the statistical distribution of the states. Assuming that the perturbations of a single agent's strategy does not influence the statistical states distribution, the latter acts as a parameter in the control problem to be solved by each agent. When the dynamics of the agents are independent stochastic processes, MFGs naturally lead to a coupled system of two partial differential equations (PDEs for short), a forward Fokker-Planck equation and a backward Hamilton-Jacobi-Bellman equation.
The latter system of PDEs has closed form solutions in very few cases only. Therefore, numerical simulation are crucial in order to address applications. The present mini-course will be devoted to numerical methods that can be used to approximate the systems of PDEs.
The numerical schemes that will be presented rely basically on monotone approximations of the Hamiltonian and on a suitable weak formulation of the Fokker-Planck equation.
These schemes have several important features:

- The discrete problem has the same structure as the continous one, so existence, energy estimates, and possibly uniqueness can be obtained with the same kind of arguments

- Monotonicity guarantees the stability of the scheme: it is robust in the deterministic limit

- convergence to classical or weak solutions can be proved

Finally, there are particular cases named variational MFGS in which the system of PDEs can be seen as the optimality conditions of some optimal control problem driven by a PDE. In such cases, augmented Lagrangian methods can be used for solving the discrete nonlinear system. The mini-course will be orgamized as follows

1. Introduction to the system of PDEs and its interpretation. Uniqueness of classical solutions.

2. Monotone finite difference schemes

3. Examples of applications

4. Variational MFG and related algorithms for solving the discrete system of nonlinear equations
Recently, an important research activity on mean field games (MFGs for short) has been initiated by the pioneering works of Lasry and Lions: it aims at studying the asymptotic behavior of stochastic differential games (Nash equilibria) as the number $n$ of agents tends to infinity. The field is now rapidly growing in several directions, including stochastic optimal control, analysis of PDEs, calculus of variations, numerical analysis and ...

49K20 ; 49N70 ; 35F21 ; 35K40 ; 35K55 ; 35Q84 ; 65K10 ; 65M06 ; 65M12 ; 91A23 ; 91A15

... Lire [+]

2 y

Research talks

We study the smallest parts function introduced by Andrews. The associated generating function forms a component of a natural mock modular form of weight 3/2 whose shadow is the Dedekind eta function. We obtain an exact formula and an algebraic formula for each value of the smallest parts function; these are analogues of the formulas of Rademacher and Bruinier-Ono for the ordinary partition function. The convergence of our expression is non-trivial; the proof relies on power savings estimates for weighted sums of generalized Kloosterman sums which follow from spectral methods. We study the smallest parts function introduced by Andrews. The associated generating function forms a component of a natural mock modular form of weight 3/2 whose shadow is the Dedekind eta function. We obtain an exact formula and an algebraic formula for each value of the smallest parts function; these are analogues of the formulas of Rademacher and Bruinier-Ono for the ordinary partition function. The convergence of our expression is ...

11F37 ; 11P82

... Lire [+]

y

Research talks

I will describe a recent framework for robust shape reconstruction based on optimal transportation between measures, where the input measurements are seen as distribution of masses. In addition to robustness to defect-laden point sets (hampered with noise and outliers), this approach can reconstruct smooth closed shapes as well as piecewise smooth shapes with boundaries.

68Rxx ; 65D17 ; 65D18

... Lire [+]

y

Outreach

Professeur à l'université de Versailles-Saint-Quentin
Président de l'association Animath

... Lire [+]

2 y

Research talks

Beyond endoscopy is the strategy put forward by Langlands for applying the trace formula to the general principle of functoriality. Subsequent papers by Langlands (one in collaboration with Frenkel and Ngo), together with more recent papers by Altug, have refined the strategy. They all emphasize the importance of understanding the elliptic terms on the geometric side of the trace formula. We shall discuss the general strategy, and how it pertains to these terms. Beyond endoscopy is the strategy put forward by Langlands for applying the trace formula to the general principle of functoriality. Subsequent papers by Langlands (one in collaboration with Frenkel and Ngo), together with more recent papers by Altug, have refined the strategy. They all emphasize the importance of understanding the elliptic terms on the geometric side of the trace formula. We shall discuss the general strategy, and how it ...

11F66 ; 22E50 ; 22E55

... Lire [+]

y

Outreach

Michael ARTIN participated in the "Artin Approximation and Infinite dimensional Geometry" event organized at CIRM in March 2015, which was part of the Jean-Morlet semester held by Herwig Hauser. Michael Artin is an American mathematician and a professor emeritus in the Massachusetts Institute of Technology mathematics department, known for his contributions to algebraic geometry and also generally recognized as one of the outstanding professors in his field. Artin was born in Hamburg, Germany, and brought up in Indiana. His parents were Natalia Jasny (Natascha) and Emil Artin, a preeminent algebraist of the 20th century. In 2002, Artin won the American Mathematical Society's annual Steele Prize for Lifetime Achievement. In 2005, he was awarded the Harvard Centennial Medal. He won the Wolf Prize in Mathematics. He is also a member of the National Academy of Sciences and a Fellow of the American Academy of Arts and Sciences, the American Association for the Advancement of Science, the Society for Industrial and Applied Mathematics, and the American Mathematical Society. Michael ARTIN participated in the "Artin Approximation and Infinite dimensional Geometry" event organized at CIRM in March 2015, which was part of the Jean-Morlet semester held by Herwig Hauser. Michael Artin is an American mathematician and a professor emeritus in the Massachusetts Institute of Technology mathematics department, known for his contributions to algebraic geometry and also generally recognized as one of the outstanding professors ...

... Lire [+]

2 y

Research talks

An oriented manifold possesses an L-homology fundamental class which is an integral refinement of its Hirzebruch L-class and assembles to the symmetric signature. In joint work with Gerd Laures and James McClure, we give a construction of such an L-homology fundamental class for those oriented singular spaces, which are integral intersection homology Poincaré spaces. Our approach constructs a morphism of ad theories from intersection Poincaré bordism to L-theory. We shall indicate an application to the stratified Novikov conjecture. The latter has been treated analytically by Albin, Leichtnam, Mazzeo and Piazza. An oriented manifold possesses an L-homology fundamental class which is an integral refinement of its Hirzebruch L-class and assembles to the symmetric signature. In joint work with Gerd Laures and James McClure, we give a construction of such an L-homology fundamental class for those oriented singular spaces, which are integral intersection homology Poincaré spaces. Our approach constructs a morphism of ad theories from intersection Poincaré ...

55N33 ; 57R67 ; 57R20 ; 57N80 ; 19G24

... Lire [+]

y

Outreach

Dominique Barbolosi est professeur à l'Université d'Aix-Marseille. Après l'agrégation, un doctorat de mathématiques et une longue carrière de chercheur, il est devenu un spécialiste mondialement reconnu dans le domaine des applications des mathématiques à la médecine. Ses recherches actuelles concernent l'utilisation des modèles mathématiques afin d'intégrer la complexité biologique et fournir des outils algorithmiques aux médecins pour optimiser l'efficacité des traitements anticancéreux, tout en limitant leurs effets toxiques. Dominique Barbolosi est professeur à l'Université d'Aix-Marseille. Après l'agrégation, un doctorat de mathématiques et une longue carrière de chercheur, il est devenu un spécialiste mondialement reconnu dans le domaine des applications des mathématiques à la médecine. Ses recherches actuelles concernent l'utilisation des modèles mathématiques afin d'intégrer la complexité biologique et fournir des outils algorithmiques aux médecins pour ...

... Lire [+]

2 y

Research talks

We prove the consistency and asymptotic normality of the Laplacian Quasi-Maximum Likelihood Estimator (QMLE) for a general class of causal time series including ARMA, AR($\infty$), GARCH, ARCH($\infty$), ARMA-GARCH, APARCH, ARMA-APARCH,..., processes. We notably exhibit the advantages (moment order and robustness) of this estimator compared to the classical Gaussian QMLE. Numerical simulations confirms the accuracy of this estimator.

62F12 ; 62M10

... Lire [+]

2 y

Research talks

This lecture series will be an introduction to stability conditions on derived categories, wall-crossing, and its applications to birational geometry of moduli spaces of sheaves. I will assume a passing familiarity with derived categories.

- Introduction to stability conditions. I will start with a gentle review of aspects of derived categories. Then an informal introduction to Bridgeland's notion of stability conditions on derived categories [2, 5, 6]. I will then proceed to explain the concept of wall-crossing, both in theory, and in examples [1, 2, 4, 6].

- Wall-crossing and birational geometry. Every moduli space of Bridgeland-stable objects comes equipped with a canonically defined nef line bundle. This systematically explains the connection between wall-crossing and birational geometry of moduli spaces. I will explain and illustrate the underlying construction [7].

- Applications : Moduli spaces of sheaves on $K3$ surfaces. I will explain how one can use the theory explained in the previous talk in order to systematically study the birational geometry of moduli spaces of sheaves, focussing on $K3$ surfaces [1, 8].
This lecture series will be an introduction to stability conditions on derived categories, wall-crossing, and its applications to birational geometry of moduli spaces of sheaves. I will assume a passing familiarity with derived categories.

- Introduction to stability conditions. I will start with a gentle review of aspects of derived categories. Then an informal introduction to Bridgeland's notion of stability conditions on derived categories ...

14D20 ; 14E30 ; 14J28 ; 18E30

... Lire [+]

2 y

Research schools

We will cover some of the more important results from commutative and noncommutative algebra as far as applications to automatic sequences, pattern avoidance, and related areas. Well give an overview of some applications of these areas to the study of automatic and regular sequences and combinatorics on words.

11B85 ; 68Q45 ; 68R15

... Lire [+]

2 y

Research talks

Kapustin and Witten introduced a powerful perspective on the geometric Langlands correspondence as an aspect of electric-magnetic duality in four dimensional gauge theory. While the familiar (de Rham) correspondence is best seen as a statement in conformal field theory, much of the structure can be seen in the simpler (Betti) setting of topological field theory using Lurie's proof of the Cobordism Hypothesis. In these lectures I will explain this perspective and illustrate its applications to representation theory following joint work with Nadler as well as Brochier, Gunningham, Jordan and Preygel. Kapustin and Witten introduced a powerful perspective on the geometric Langlands correspondence as an aspect of electric-magnetic duality in four dimensional gauge theory. While the familiar (de Rham) correspondence is best seen as a statement in conformal field theory, much of the structure can be seen in the simpler (Betti) setting of topological field theory using Lurie's proof of the Cobordism Hypothesis. In these lectures I will explain ...

14D24 ; 22E57 ; 22E46 ; 20G05

... Lire [+]

2 y

Research talks

I shall classify current approaches to multiple inferences according to goals, and discuss the basic approaches being used. I shall then highlight a few challenges that await our attention : some are simple inequalities, others arise in particular applications.

62J15 ; 62P10

... Lire [+]

2 y

Research schools

In this series of lectures, we will focus on simple Lie groups, their dense subgroups and the convolution powers of their measures. In particular, we will dicuss the following two questions.
Let G be a Lie group. Is every Borel measurable subgroup of G with maximal Hausdorff dimension equal to the group G?
Is the convolution of sufficiently many compactly supported continuous functions on G always continuously differentiable?
Even though the answer to these questions is no when G is abelian, the answer is yes when G is simple. This is a joint work with N. de Saxce. First, I will explain the history of these two questions and their interaction. Then, I will relate these questions to spectral gap properties. Finally, I will discuss these spectral gap properties.
In this series of lectures, we will focus on simple Lie groups, their dense subgroups and the convolution powers of their measures. In particular, we will dicuss the following two questions.
Let G be a Lie group. Is every Borel measurable subgroup of G with maximal Hausdorff dimension equal to the group G?
Is the convolution of sufficiently many compactly supported continuous functions on G always continuously differentiable?
Even though the ...

22E30 ; 28A78 ; 43A65

... Lire [+]

y

Research talks

La théorie des valeurs extrêmes décrit le comportement du maximum d'une suite de variables aléatoires i.i.d. à valeurs réelles. L'une des distributions limites possibles, la loi de Gumbel, apparaît également dans l'asymptotique en bruit faible du temps de transition réactive pour des équations différentielles stochastiques métastables. Nous décrivons des résultats récents en dimension 1 et leur interprétation, et donnons un résultat en dimension 2, motivé par le phénomène de synchronisation d'oscillateurs couplés. La théorie des valeurs extrêmes décrit le comportement du maximum d'une suite de variables aléatoires i.i.d. à valeurs réelles. L'une des distributions limites possibles, la loi de Gumbel, apparaît également dans l'asymptotique en bruit faible du temps de transition réactive pour des équations différentielles stochastiques métastables. Nous décrivons des résultats récents en dimension 1 et leur interprétation, et donnons un résultat en dimension ...

60G70 ; 37H10

... Lire [+]

2 y

Research talks

68Wxx ; 68P05 ; 68M11 ; 68U20 ; 68Q80 ; 68T05 ; 94A60 ; 94A08

... Lire [+]

2 y

Research talks

This talk is based on a work jointly with Timothy Budd (Copenhagen), Nicolas Curien (Orsay) and Igor Kortchemski (Ecole Polytechnique).
Consider a self-similar Markov process $X$ on $[0,\infty)$ which converges at infinity a.s. We interpret $X(t)$ as the size of a typical cell at time $t$, and each negative jump as a birth event. More precisely, if ${\Delta}X(s) = -y < 0$, then $s$ is the birth at time of a daughter cell with size $y$ which then evolves independently and according to the same dynamics. In turn, daughter cells give birth to granddaughter cells each time they make a negative jump, and so on.
The genealogical structure of the cell population can be described in terms of a branching random walk, and this gives rise to remarkable martingales. We analyze traces of these mar- tingales in physical time, and point at some applications for self-similar growth-fragmentation processes and for planar random maps.
This talk is based on a work jointly with Timothy Budd (Copenhagen), Nicolas Curien (Orsay) and Igor Kortchemski (Ecole Polytechnique).
Consider a self-similar Markov process $X$ on $[0,\infty)$ which converges at infinity a.s. We interpret $X(t)$ as the size of a typical cell at time $t$, and each negative jump as a birth event. More precisely, if ${\Delta}X(s) = -y < 0$, then $s$ is the birth at time of a daughter cell with size $y$ which then ...

60G51 ; 60G18 ; 60J75 ; 60G44 ; 60G50

... Lire [+]

2 y

Outreach

Directeur de recherche au CNRS
Institut Fourier - Université de Grenoble 1

... Lire [+]

2 y

Outreach

Directrice de recherche CNRS au DMA, UMR 8553 (équipe Analyse)
Directrice Adjoint Scientifique à l'Insmi, en charge de la politique de sites (Institut des Sciences Mathématiques et de leurs Interactions - CNRS)
Adjointe Déléguée Scientifique Référente au CNRS

... Lire [+]

Ressources Electroniques

Books & Print journals

Recherche avancée


0
Z