En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1 6

$k$-abelian singletons and Gray codes for Necklaces

Sélection Signaler une erreur
Multi angle
Auteurs : Whiteland, Markus (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : $k$-abelian singletons in connection with Gray codes for Necklaces. This work is based on [1]. We are interested in the equivalence classes induced by $k$-abelian equivalence, especially in the number of the classes containing only one element, $k$-abelian singletons. By characterizing $k$-abelian equivalence with $k$-switchings, a sort of rewriting operation, we are able to obtain a structural representation of $k$-abelian singletons. Analyzing this structural result leads, through rather technical considerations, to questions of certain properties of sets of vertex-disjoint cycles in the de Bruijn graph $dB_\Sigma(k-1)$ of order $k-1$. Some problems turn out to be equivalent to old open problems such as Gray codes for necklaces (or conjugacy classes). We shall formulate the problem in the following.
Let $\mathcal{C} = \lbrace V_1, . . . , V_n\rbrace$ be a cycle decomposition of $dB_\Sigma(n)$, that is, a partition of the vertex set $\Sigma^n$ into sets, each inducing a cycle or a loop in $dB_\Sigma(n)$. Let us then define the quotient graph $dB_\Sigma/\mathcal{C}$ as follows. The set of points are the sets in $\mathcal{C}$. For distinct sets $X, Y \in \mathcal{C}$, we have and edge from $X$ to $Y$ if and only if there exists $x{\in}X,y{\in}Y$ such that $(x,y){\in}dB_\Sigma(n)$. An old result shows that the size of a cycle decomposition of $dB_\Sigma(n)$ is at most the number of necklaces of length $n$ over $\Sigma$ (see [2]). We call a cycle decomposition maximal, if its size is maximal. In particular, the cycle decomposition given by necklaces is maximal.
Conjecture 1. For any $\Sigma$ and $n{\in}\mathbb{N}$, there exist a maximal cycle decomposition $\mathcal{C}$ of $dB_\Sigma(n)$ such that $dB_\Sigma(n)/\mathcal{C}$ contains a hamiltonian path.
A natural candidate to study here is the cycle decomposition given by necklaces. This has been studied in the literature in the connection of Gray codes for necklaces. Concerning this, there is an open problem since $1997$ $[3]$ : Let $\Sigma = \lbrace0, 1\rbrace$, $n$ odd, and $\mathcal{C}$ be the cycle decomposition given by necklaces of length $n$ over $\lbrace0,1\rbrace$. Does $dB(n)/\mathcal{C}$ contain a hamiltonian path ?
The answer to the above has been verified to be ”yes” for $n \le 15$ $([1]$). The case of $n \ge 4$ and $n$ even, the graph is bipartite with one partition larger than the other. On the other hand, we can find other maximal cycle decompositions of $dB_\Sigma(4)$, $dB_\Sigma(6)$, and $dB_\Sigma(8)$ for the binary alphabet which all admit hamiltonian quotient graphs.
We concluded in $[1]$ that Conjecture $1$ is equivalent to the following $\Theta$-estimation of the number of $k$-abelian singletons of length $n$.
Conjecture 2. The number of $k$-abelian singletons of length $n$ over alphabet $\Sigma$ is of order $\Theta(n^{N_{\Sigma}(k-1)-1})$, where $N_\Sigma(l)$ is the number of necklaces of length $l$ over $\Sigma$.

Codes MSC :
05Axx - Enumerative combinatorics
68R15 - Combinatorics on words
94B25 - Combinatorial codes

    Informations sur la Vidéo

    Langue : Anglais
    Date de publication : 31/03/16
    Date de captation : 16/03/16
    Sous collection : Research talks
    arXiv category : Combinatorics ; Discrete Mathematics
    Domaine : Combinatorics ; Computer Science
    Format : MP4 (.mp4) - HD
    Durée : 00:25:24
    Audience : Researchers
    Download : https://videos.cirm-math.fr/2016-03-16_Whiteland.mp4

Informations sur la Rencontre

Nom de la rencontre : Combinatorics on words / Combinatoire des mots
Organisateurs de la rencontre : Cassaigne, Julien ; Nowotka, Dirk
Dates : 14/03/16 - 18/03/16
Année de la rencontre : 2016
URL Congrès : http://conferences.cirm-math.fr/1429.html

Données de citation

DOI : 10.24350/CIRM.V.18946003
Citer cette vidéo: Whiteland, Markus (2016). $k$-abelian singletons and Gray codes for Necklaces. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18946003
URI : http://dx.doi.org/10.24350/CIRM.V.18946003

Bibliographie

  • [1] Karhumäki, J., Puzynina, S., Rao, M., & Whiteland, M.A. On the cardinalities of k-abelian equivalence classes, (submitted, 2016) -

  • [2] Mykkeltveit, J. (1972). A Proof of Golomb's Conjecture for the de Bruijn Graph, Journal of Combinatorial Theory (B), 13, 40-45 - http://dx.doi.org/10.1016/0095-8956(72)90006-8

  • [3] Savage, C. (1997). A Survey of Combinatorial Gray Codes, SIAM Review 39.4, 605-629 - http://dx.doi.org/10.1137/S0036144595295272



Sélection Signaler une erreur