m

F Nous contacter

0
     
Post-edited

H 1 Towards complex and realistic tokamaks geometries in computational plasma physics

Auteurs : Ratnani, Ahmed (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...
edge localised modes (ELMs) MHD simulation (JOREK) computer aided design (CAD) isogeometric analysis (IGA) splines h-p-k-refinement k-refinement flux aligned meshes ITER tokamak WEST tokamak r-refinement Monge-Kantorovich problem Monge-Ampère equation geometric multigrid two-grid method for nonlinear PDE equidistribution - adaptative anisotropic mapping

Résumé :
Codes MSC :
65D07 - Splines (numerical methods)
65D17 - Computer aided design (modeling of curves and surfaces)
65N50 - Mesh generation and refinement
82D10 - Plasmas
35K96 - Parabolic Monge-Ampère equations

    Informations sur la Vidéo

    Langue : Anglais
    Date de publication : 22/08/14
    Date de captation : 14/08/14
    Collection : Research talks
    Format : QuickTime (.mov) Durée : 00:55:30
    Domaine : Numerical Analysis & Scientific Computing ; Mathematical Physics
    Audience : Chercheurs ; Doctorants , Post - Doctorants
    Download : http://videos.cirm-math.fr/2014-08-14_Ratnani.mp4

Informations sur la rencontre

Nom du congrès : CEMRACS : Numerical modeling of plasmas / CEMRACS : Modèles numériques des plasmas
Organisteurs Congrès : Campos Pinto, Martin ; Charles, Frédérique ; Guillard, Hervé ; Nkonga, Boniface
Dates : 21/07/14 - 29/08/14
Année de la rencontre : 2014
URL Congrès : http://smai.emath.fr/cemracs/cemracs14/

Citation Data

DOI : 10.24350/CIRM.V.18556703
Cite this video as: Ratnani, Ahmed (2014). Towards complex and realistic tokamaks geometries in computational plasma physics. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18556703
URI : http://dx.doi.org/10.24350/CIRM.V.18556703

Bibliographie

  1. Ratnani, A. et al. Gasus : Python for IsoGeometric Analysis simulations in Plasmas Physics. (In preparation) -

  2. Ratnani, A. et al. Alignement and equidistribution for two-dimensional grid adaptation using B-splines. (In preparation) -

  3. Ratnani, A. et al. Application of the IsoGeometric mesh adaptation for solving the Anistropic Diffusion problem. (In preparation) -

  4. Baines, M.J. Least squares and approximate equidistribution in multidimensions. Numerical Methods for Partial Dierential Equations, vol. 15 (1999), no. 5, pp. 605-615 - http://dx.doi.org/10.1002/(sici)1098-2426(199909)15:5<605::aid-num7>3.0.co;2-9

  5. Benamou, J.D., Froese, B. D. and Oberman, A. M. Two numerical methods for the elliptic monge-ampère equation. ESAIM : Mathematical Modelling and Numerical Analysis, vol. 44 (2010), no. 4, pp. 737-758 - http://dx.doi.org/10.1051/m2an/2010017

  6. Brenier, Y. Polar factorization and monotone rearrangement of vector-valued functions. Communications on Pure and Applied Mathematics, vol. 44 (1991), no. 4, pp. 375-417 - http://dx.doi.org/10.1002/cpa.3160440402

  7. Budd, C.J., Cullen, M.J.P. and Walsh, E.J. Monge-ampère based moving mesh methods for numerical weather prediction, with applications to the eady problem. Journal of Computational Physics, vol. 236 (2013), pp. 247-270 - http://dx.doi.org/10.1016/j.jcp.2012.11.014

  8. Delzanno, G.L., Chacon, L., Finn, J.M., Chung, Y. and Lapenta, G. An optimal robust equidistribution method for two-dimensional grid adaptation based on monge-kantorovich optimization. Journal of Computational Physics, vol. 227 (2008), no. 23, pp. 9841-9864 - http://dx.doi.org/10.1016/j.jcp.2008.07.020

  9. Fasshauer, G.E. and Schumaker, Larry L. Minimal energy surfaces using parametric splines. Computer Aided Geometric Design, vol. 13 (1996), no. 1, pp. 45-79 - http://dx.doi.org/10.1016/0167-8396(95)00006-2

  10. Floater, M.S. and Hormann, K. Surface parameterization : a tutorial and survey. In Dodgson, N.A. (ed.) et al., Advances in Multiresolution for Geometric Modelling. Mathematics and Visualization. Berlin, Springer, 2005, pp. 157-186. ISBN 3-540-21462-3 - http://dx.doi.org/10.1007/3-540-26808-1_9

  11. Huang, W. and Russell, R.D. Adaptive moving mesh methods. Applied mathematical sciences, 174. New York, Springer, 2011. xvii, 432 p. ISBN 978-1-4419-7915-5 - http://dx.doi.org/10.1007/978-1-4419-7916-2



Ressources Electroniques

Books & Print journals

Recherche avancée


0
Z