m

F Nous contacter

0

Documents  Henrot, Antoine | enregistrements trouvés : 7

O
     

-A +A

P Q

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Control Theory and Optimization;Partial Differential Equations;Geometry

We discuss some new results for the Cheeger constant in dimension two, including:
- a polygonal version of Faber-Krahn inequality;
- a reverse isoperimetric inequality for convex bodies;
- a Mahler-type inequality in the axisymmetric setting;
- asymptotic behaviour of optimal partition problems.
Based on some recent joint works with D.Bucur,
and for the last part also with B.Velichkov and G.Verzini.

49Q10 ; 52B60 ; 35P15 ; 52A40 ; 52A10 ; 35A15

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Control Theory and Optimization;Partial Differential Equations

In this talk we deal with the regularity of optimal sets for a shape optimization problem involving a combination
of eigenvalues, under a fixed volume constraints. As a model problem, consider
\[
\min\Big\{\lambda_1(\Omega)+\dots+\lambda_k(\Omega)\ :\ \Omega\subset\mathbb{R}^d,\ \text{open}\ ,\ |\Omega|=1\Big\},
\]
where $\langle_i(\cdot)$ denotes the eigenvalues of the Dirichlet Laplacian and $|\cdot|$ the $d$-dimensional Lebesgue measure.
We prove that any minimizer $_{opt}$ has a regular part of the topological boundary which is relatively open and
$C^{\infty}$ and that the singular part has Hausdorff dimension smaller than $d-d^*$, where $d^*\geq 5$ is the minimal
dimension allowing the existence of minimal conic solutions to the blow-up problem.

We mainly use techniques from the theory of free boundary problems, which have to be properly extended to the case of
vector-valued functions: nondegeneracy property, Weiss-like monotonicity formulas with area term; finally through the
properties of non tangentially accessible domains we shall be in a position to exploit the ''viscosity'' approach recently proposed by De Silva.

This is a joint work with Dario Mazzoleni and Bozhidar Velichkov.
In this talk we deal with the regularity of optimal sets for a shape optimization problem involving a combination
of eigenvalues, under a fixed volume constraints. As a model problem, consider
\[
\min\Big\{\lambda_1(\Omega)+\dots+\lambda_k(\Omega)\ :\ \Omega\subset\mathbb{R}^d,\ \text{open}\ ,\ |\Omega|=1\Big\},
\]
where $\langle_i(\cdot)$ denotes the eigenvalues of the Dirichlet Laplacian and $|\cdot|$ the $d$-dimensional Lebesgue m...

49Q10 ; 35R35 ; 47A75 ; 49R05

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Control Theory and Optimization;Partial Differential Equations

The Bossel-Daners is a Faber-Krahn type inequality for the first Laplacian eigenvalue with Robin boundary conditions. We prove a stability result for such inequality.

49Q10 ; 49K20 ; 35P15 ; 35J05 ; 47J30

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Control Theory and Optimization;Partial Differential Equations;Mathematical Physics

We introduce a new function which measures the torsional instability of a partially hinged rectangular plate. By exploiting it, we compare the torsional performances of different plates reinforced with stiffening trusses. This naturally leads to a shape optimization problem which can be set up through a minimaxmax procedure.

35Q74 ; 49Q10 ; 74K20

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Control Theory and Optimization;Geometry

In 2015 Chambers proved the Log-convex Density Conjecture, which says that for a radial density f on $R^n$, spheres about the origin are isoperimetric if and only if log f is convex (the stability condition). We discuss recent progress and open questions for other densities, unequal perimeter and volume densities, and other metrics.

49Q20 ; 53C17 ; 49N60

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- xi; 365 p.
ISBN 978-3-03719-178-1

Tracts in mathematics , 0028

Localisation : Ouvrage RdC (HENR)

optimisation des formes # design optimum # calcul des variations # variation des domaines # convergence de Hausdorff # $\Gamma$-convergence # dérivée de forme # géométrie des formes optimales # problème de Laplace-Dirichlet # problème de Neumann # problème surdéterminé # inégalité isopérimétrique # capacité # théorie du potentiel # théorie spectrale # homogénéisation

49Q10 ; 49Q05 ; 49Q12 ; 49K20 ; 49K40 ; 53A10 ; 35R35 ; 35J20 ; 58E25 ; 31B15 ; 65K10 ; 93B27 ; 74P20 ; 74P15 ; 74G65 ; 76M30

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 333 p.
ISBN 978-3-540-26211-4

Mathématiques & applications , 0048

Localisation : Collection 1er étage

optimisation de forme # variation de domaine # opérateur de Laplace # capacité classique # dérivation par rapport à une forme # topologie # forme optimale # propriétés géométriques # homogénisation

49-02 ; 74-02 ; 49Q10 ; 49Q05 ; 49Q12 ; 49K20 ; 49K40 ; 53A10 ; 35R35 ; 58E25 ; 31B15 ; 65K10 ; 93B29 ; 74P20 ; 74P15 ; 74G65 ; 76M30

... Lire [+]

Z