m

F Nous contacter

0

Documents  37B10 | enregistrements trouvés : 47

O

-A +A

P Q

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Combinatorics;Computer Science;Dynamical Systems and Ordinary Differential Equations

We will consider (sub)shifts with complexity such that the difference from $n$ to $n+1$ is constant for all large $n$. The shifts that arise naturally from interval exchange transformations belong to this class. An interval exchange transformation on d intervals has at most $d/2$ ergodic probability measures. We look to establish the correct bound for shifts with constant complexity growth. To this end, we give our current bound and discuss further improvements when more assumptions are allowed. This is ongoing work with Michael Damron. We will consider (sub)shifts with complexity such that the difference from $n$ to $n+1$ is constant for all large $n$. The shifts that arise naturally from interval exchange transformations belong to this class. An interval exchange transformation on d intervals has at most $d/2$ ergodic probability measures. We look to establish the correct bound for shifts with constant complexity growth. To this end, we give our current bound and discuss ...

37B10 ; 37A25 ; 68R15

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools;Dynamical Systems and Ordinary Differential Equations

I will speak about multidimensional shifts of finite type and their measures of maximal entropy. In particular, I will present results about computability of topological entropy for SFTs and measure-theoretic entropy. I'll focus on various mixing hypotheses, both topological and measure-theoretic, which imply different rates of computability for these objects, and give applications to various systems, including the hard square model, k-coloring, and iceberg model. I will speak about multidimensional shifts of finite type and their measures of maximal entropy. In particular, I will present results about computability of topological entropy for SFTs and measure-theoretic entropy. I'll focus on various mixing hypotheses, both topological and measure-theoretic, which imply different rates of computability for these objects, and give applications to various systems, including the hard square model, k-coloring, ...

37B50 ; 37B10 ; 37B40

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools;Dynamical Systems and Ordinary Differential Equations

I will speak about multidimensional shifts of finite type and their measures of maximal entropy. In particular, I will present results about computability of topological entropy for SFTs and measure-theoretic entropy. I'll focus on various mixing hypotheses, both topological and measure-theoretic, which imply different rates of computability for these objects, and give applications to various systems, including the hard square model, k-coloring, and iceberg model. I will speak about multidimensional shifts of finite type and their measures of maximal entropy. In particular, I will present results about computability of topological entropy for SFTs and measure-theoretic entropy. I'll focus on various mixing hypotheses, both topological and measure-theoretic, which imply different rates of computability for these objects, and give applications to various systems, including the hard square model, k-coloring, ...

37B50 ; 37B10 ; 37B40

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools;Dynamical Systems and Ordinary Differential Equations

I will speak about multidimensional shifts of finite type and their measures of maximal entropy. In particular, I will present results about computability of topological entropy for SFTs and measure-theoretic entropy. I'll focus on various mixing hypotheses, both topological and measure-theoretic, which imply different rates of computability for these objects, and give applications to various systems, including the hard square model, k-coloring, and iceberg model. I will speak about multidimensional shifts of finite type and their measures of maximal entropy. In particular, I will present results about computability of topological entropy for SFTs and measure-theoretic entropy. I'll focus on various mixing hypotheses, both topological and measure-theoretic, which imply different rates of computability for these objects, and give applications to various systems, including the hard square model, k-coloring, ...

37B50 ; 37B10 ; 37B40

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools;Dynamical Systems and Ordinary Differential Equations;Geometry

These lectures introduce the dynamical systems approach to tilings of Euclidean space, especially quasicrystalline tilings that have been constructed using a ‘supertile method’. Because tiling dynamics parallels one-dimensional symbolic dynamics, we discuss this case as well, highlighting the differences and similarities in the methods of study and the results that can be obtained.
In the first lecture we motivate the field with the discovery of quasicrystals, which led to D. Schectman’s winning the 2011 Nobel Prize in Chemistry. Then we set up the basics of tiling dynamics, describing tiling spaces, a tiling metric, and the shift or translation actions. Shift-invariant and ergodic measures are discussed, along with fundamental topological and dynamical properties.
The second lecture brings in the supertile construction methods, including symbolic substitutions, self-similar tilings, $S$-adic systems, and fusion rules. Numerous examples are given, most of which are not the “standard” examples, and we identify many commonalities and differences between these interrelated methods of construction. Then we compare and contrast dynamical results for supertile systems, highlighting those key insights that can be adapted to all cases.
In the third lecture we investigate one of the many current tiling research areas: spectral theory. Schectman made his Nobel-prize-winning discovery using diffraction analysis, and studying the mathematical version has been quite fruitful. Spectral theory of tiling dynamical systems is also of broad interest. We describe how these types of spectral analysis are carried out, give examples, and discuss what is known and unknown about the relationship between dynamical and diffraction analysis. Special attention is paid to the “point spectrum”, which is related to eigenfunctions and also to the bright spots that appear on diffraction images.
These lectures introduce the dynamical systems approach to tilings of Euclidean space, especially quasicrystalline tilings that have been constructed using a ‘supertile method’. Because tiling dynamics parallels one-dimensional symbolic dynamics, we discuss this case as well, highlighting the differences and similarities in the methods of study and the results that can be obtained.
In the first lecture we motivate the field with the discovery of ...

37B50 ; 37B10 ; 52C23

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 245 p.
ISBN 978-0-521-79660-6

London mathematical society lecture note series , 0279

Localisation : Collection 1er étage

dynamique symbolique # théorie ergodique # dynamique topologique # sous-groupe de Markov # automate fini # entropie topologique # classification topologique # problème diophantien # loi asymptotique # théorie combinatoire de Ramsey

37-06 ; 37Axx ; 37B10

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 369 p.
ISBN 978-0-19-859685-1

Localisation : Colloque 1er étage (TRIE)

théorie ergodique # géométrie hyperbolique # dynamique symbolique # fonction zeta # groupe fuchsien # géodésique # espace hyperbolique

37-01 ; 37D40 ; 58-06 ; 28Dxx ; 37B10

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 156 p.
ISBN 978-0-8218-2816-8

Proceedings of symposia in applied mathematics , 0060

Localisation : Collection 1er étage

dynamique symbolique # pavage # code correcteur d'erreur # code linéaire # dynamique complexe # groupe de Steinberg

37B10 ; 37B50 ; 37-06 ; 37A15 ; 37F45 ; 94B05 ; 19C99

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 120 p.
ISBN 978-90-6196-527-5

CWI tract , 0135

Localisation : Collection 1er étage

femmes et mathématiques # nombre normal # structure de groupe modulaire # fraction continue # théorie métrique des fractions continues # entropie # dynamique symbolique # transformation de Fourier # ondelettes # stabilité des méthodes numériques # convergence des méthodes numériques # convergence

11K16 ; 11F06 ; 11A55 ; 11K50 ; 28D20 ; 37B10 ; 42A38 ; 42C40 ; 65M12 ; 93B05

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 306 p.
ISBN 978-981-02-4217-6

Localisation : Colloque 1er étage (MARS)

système dynamique # système dynamique discret # dynamique symbolique # dynamique statistique # réseau neuronal # billard # cristal # chaos

37-06 ; 37Cxx ; 37B10 ; 82D25

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- X-317 p.
ISBN 978-0-8218-4747-3

Contemporary mathematics , 0503

Localisation : Collection 1er étage

théorie des opérateurs # dynamique # système dynamique

46L55 ; 37BXX ; 47LXX ; 46L08 ; 46L35 ; 46H25 ; 37B10 ; 37FXX ; 16S35 ; 54H20

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- xxii; 266 p.
ISBN 978-2-85629-312-6

Séminaires et congrès , 0020

Localisation : Collection 1er étage

bêta-numération # application premier retour # applications d'intervalles # applications fer à cheval # applications monotones par morceaux # attracteurs # auto-couplage # automate cellulaire # cobord # convolutions de Bernoulli # décalages markoviens fortement positivement récurrents # développements glouton et paresseux # diagramme de Markov # dimension de Hausdorff # dynamique symbolique # dynamiques directionnelles # échelles de numération # entropie # feuilletage linéaire # flot géodésique # géométrie fractale # invariants par tricotage # mélange faible # mesure d'Erdös # mesure invariante # mesure invariante absolument continue # mesures de Gibbs et faiblement gibbsiennes # mesures d'entropie maximale # métrique euclidienne # nombre d'or # odomètre # orbites périodiques # partition markovienne # pistage # principe variationnel # problème de rigidité # rang faible # section transverse # sous-décalage de Toeplitz # surface plate # surface pointée # système dynamique # systèmes dynamiques en topologie et en combinatoire # systèmes dynamiques minimaux # systèmes dynamiques symboliques # théorie des suites de tricotage # théorie ergodique # transformation de rang un # zêta fonction de Artin-Mazur bêta-numération # application premier retour # applications d'intervalles # applications fer à cheval # applications monotones par morceaux # attracteurs # auto-couplage # automate cellulaire # cobord # convolutions de Bernoulli # décalages markoviens fortement positivement récurrents # développements glouton et paresseux # diagramme de Markov # dimension de Hausdorff # dynamique symbolique # dynamiques directionnelles # échelles de numération # ...

11A67 ; 11K55 ; 15A48 ; 28A12 ; 28D05 ; 28D20 ; 32G15 ; 37Axx ; 37B05 ; 37B10 ; 37B15 ; 37D40 ; 37D45 ; 37E05 ; 30F30 ; 53D25 ; 57R30

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- x; 520 p.
ISBN 978-2-85629-785-8

Astérisque , 0361

Localisation : Périodique 1er étage

actions commensurantes # algèbre de Steenrod # algèbres de Lie semi-simple # bases canoniques # biparti # caractère # carte # cartes de mots # catégorification # classification # cohomologie étale # cohomologie galoisienne # cohomologie motivique # commutateurs # complexe des courbes # conjecture de Baum-Connes # conjecture de Bloch-Kato # conjecture de Hodge # conjecture d'Ore # conjecture de Thompson # constantes de Siegel-Veech # corps d'Okounkov # courbure # cycles algébriques # déterminant du laplacien diagramme de Young # différentielles holomorphes # dimension d'Iitaka # distance de Wasserstein # dynamique symbolique # échanges d'intervalles # ÉDP d'évolution # ÉDP stochastiques # endoscopie tordue # équations F-KPP # espace de modules de différentielles quadratiques # espaces métriques mesurés # exposants de Lyapunov # extrêmes # flot de la chaleur # flot géodésique de Teichmüller # flots de gradient # fonction de Hilbert # fonctorialité # formes automorphes de carré intégrable # graphe expanseur # groupe hyperbolique # groupes approximativement finis # groupes classiques # groupes élémentairement moyennables # groupes kleiniens # groupes moyennables # groupes pleins-topologiques # groupes quantiques # homéomorphismes minimaux # hyperbolicité au sens de Kobayashi # inégalités de Morse holomorphes # KK-théorie # K-théorie de Milnor # laminations terminales # mouvement brownien branchant # odomètres # partition # polynôme de Kerov propriété (T) # renormalisation # sous-décalages topologiques # surfaces plates # symétriseur de Young # théorie homotopique des schémas # trajectoires rugueuses # unicellulaire # variations de structure de Hodge actions commensurantes # algèbre de Steenrod # algèbres de Lie semi-simple # bases canoniques # biparti # caractère # carte # cartes de mots # catégorification # classification # cohomologie étale # cohomologie galoisienne # cohomologie motivique # commutateurs # complexe des courbes # conjecture de Baum-Connes # conjecture de Bloch-Kato # conjecture de Hodge # conjecture d'Ore # conjecture de Thompson # constantes de Siegel-Veech # corps ...

05E10 ; 14F10 ; 14F42 ; 14J70 ; 17B37 ; 11F72 ; 11R39 ; 14-02 ; 14C25 ; 14D07 ; 19K35 ; 20-02 ; 20B30 ; 20C15 ; 20C33 ; 20D05 ; 20E32 ; 20F05 ; 20F12 ; 20G15 ; 20G40 ; 20H10 ; 20P05 ; 22E55 ; 30F30 ; 30F40 ; 32G15 ; 32G20 ; 32Q45 ; 32S35 ; 32S60 ; 35K05 ; 37B10 ; 37B50 ; 43A07 ; 49J45 ; 53C21 ; 57M50 ; 58A20 ; 60G70 ; 60H15 ; 60J65 ; 60J80 ; 82C28

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- xvi; 316 p.
ISBN 978-1-4704-2299-8

Contemporary mathematics , 0678

Localisation : Collection 1er étage

théorie ergodique # système dynamique # John C. Oxtoby

37A05 ; 37B05 ; 37A40 ; 37B50 ; 37B10 ; 37A30 ; 37A20 ; 01A70

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools;Computer Science;Dynamical Systems and Ordinary Differential Equations

An automorphism of a subshift $X$ is a self-homeomorphism of $X$ that commutes with the shift map. The study of these automorphisms started at the very beginning of the symbolic dynamics. For instance, the well known Curtis-Hedlund-Lyndon theorem asserts that each automorphism is a cellular automaton. The set of automorphisms forms a countable group that may be very complicated for mixing shift of finite type (SFT). The study of this group for low complexity subshifts has become very active in the last five years. Actually, for zero entropy subshift, this group is much more tame than in the SFT case. In a first lecture we will recall some striking property of this group for subshift of finite type. The second lecture is devoted to the description of this group for classical minimal sub shifts of zero entropy with sublinear complexity and for the family of Toeplitz subshifts. The last lecture concerns the algebraic properties of the automorphism group for subshifts with sub-exponential complexity. We will also explain why sonic group like the Baumslag-Solitar $BS(1,n)$ or $SL(d,Z), d >2$, can not embed into an automorphism group of a zero entropy subshift. An automorphism of a subshift $X$ is a self-homeomorphism of $X$ that commutes with the shift map. The study of these automorphisms started at the very beginning of the symbolic dynamics. For instance, the well known Curtis-Hedlund-Lyndon theorem asserts that each automorphism is a cellular automaton. The set of automorphisms forms a countable group that may be very complicated for mixing shift of finite type (SFT). The study of this group for ...

37B10 ; 37B50 ; 37B15 ; 68Q80

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools;Combinatorics;Computer Science;Dynamical Systems and Ordinary Differential Equations

I shall discuss old and new results on amenability of groups, and more generally G-sets. This notion traces back to von Neumann in his study of the Hausdorff-Banach-Tarski paradox, and grew into one of the fundamental properties a group may / may not have -- each time with important consequences.
Lecture 1. I will present the classical notions and equivalent definitions of amenability, with emphasis on group actions and on combinatorial aspects: Means, Folner sets, random walks, and paradoxical decompositions.
Lecture 2. I will describe recent work by de la Salle et al. leading to a quite general criterion for amenability, as well as some still open problems. In particular, I will show that full topological groups of minimal Z-shifts are amenable.
Lecture 3. I will explain links between amenability and cellular automata, in particular the "Garden of Eden" properties by Moore and Myhill: there is a characterization of amenable groups in terms of whether these classical theorems still hold.
I shall discuss old and new results on amenability of groups, and more generally G-sets. This notion traces back to von Neumann in his study of the Hausdorff-Banach-Tarski paradox, and grew into one of the fundamental properties a group may / may not have -- each time with important consequences.
Lecture 1. I will present the classical notions and equivalent definitions of amenability, with emphasis on group actions and on combinatorial aspects: ...

37B15 ; 37B10 ; 43A07 ; 68Q80

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools;Analysis and its Applications;Combinatorics;Dynamical Systems and Ordinary Differential Equations;Number Theory

28A80 ; 37A30 ; 37B10 ; 37E05 ; 11B85 ; 11B83 ; 68R15

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Dynamical Systems and Ordinary Differential Equations

I will survey recent results on the generic properties of probability measures invariant by the geodesic flow defined on a nonpositively curved manifold. Such a flow is one of the early example of a non-uniformly hyperbolic system. I will talk about ergodicity and mixing both in the compact and noncompact setting, and ask some questions about the associated frame flow, which is partially hyperbolic.

37B10 ; 37D40 ; 34C28 ; 37C20 ; 37C40 ; 37D35

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools;Dynamical Systems and Ordinary Differential Equations;Geometry;Number Theory

Based on work done by Morse and Hedlund (1940) it was observed by Arnoux and Rauzy (1991) that the classical continued fraction algorithm provides a surprising link between arithmetic and diophantine properties of an irrational number $\alpha$, the rotation by $\alpha$ on the torus $\mathbb{T} = \mathbb{R}/\mathbb{Z}$, and combinatorial properties of the well known Sturmian sequences, a class of sequences on two letters with low subword complexity.
It has been conjectured since the early 1990ies that this correspondence carries over to generalized continued fraction algorithms, rotations on higher dimensional tori, and so-called $S$-adic sequences generated by substitutions. The idea of working towards this generalization is known as Rauzy’s program. Although, starting with Rauzy (1982) a number of examples for such a generalization was devised, Cassaigne, Ferenczi, and Zamboni (2000) came up with a counterexample that showed the limitations of such a generalization.
Nevertheless, recently Berthé, Steiner, and Thuswaldner (2016) made some further progress on Rauzy’s program and were able to set up a generalization of the above correspondences. They proved that the above conjecture is true under certain natural conditions. A prominent role in this generalization is played by tilings induced by generalizations of the classical Rauzy fractal introduced by Rauzy (1982).
Another idea which is related to the above results goes back to Artin (1924), who observed that the classical continued fraction algorithm and its natural extension can be viewed as a Poincaré section of the geodesic flow on the space $SL_2(\mathbb{Z}) \ SL_2(\mathbb{R})$. Arnoux and Fisher (2001) revisited Artin’s idea and showed that the above mentioned correspondence between continued fractions, rotations, and Sturmian sequences can be interpreted in a very nice way in terms of an extension of this geodesic flow which they called the scenery flow. Currently, Arnoux et al. are setting up elements of a generalization of this connection as well.
It is the aim of my series of lectures to review the above results.
Based on work done by Morse and Hedlund (1940) it was observed by Arnoux and Rauzy (1991) that the classical continued fraction algorithm provides a surprising link between arithmetic and diophantine properties of an irrational number $\alpha$, the rotation by $\alpha$ on the torus $\mathbb{T} = \mathbb{R}/\mathbb{Z}$, and combinatorial properties of the well known Sturmian sequences, a class of sequences on two letters with low subword ...

11B83 ; 11K50 ; 37B10 ; 52C23 ; 53D25

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Dynamical Systems and Ordinary Differential Equations;Number Theory

Given $x\in(0, 1]$, let ${\mathcal U}(x)$ be the set of bases $\beta\in(1,2]$ for which there exists a unique sequence $(d_i)$ of zeros and ones such that $x=\sum_{i=1}^{\infty}{{d_i}/{\beta^i}}$. In 2014, Lü, Tan and Wu proved that ${\mathcal U}(x)$ is a Lebesgue null set of full Hausdorff dimension. In this talk, we will show that the algebraic sum ${\mathcal U}(x)+\lambda {\mathcal U}(x)$, and the product ${\mathcal U}(x)\cdot {\mathcal U}(x)^{\lambda}$ contain an interval for all $x\in (0, 1]$ and $\lambda\ne 0$. As an application we show that the same phenomenon occurs for the set of non-matching parameters associated with the family of symmetric binary expansions studied recently by the first speaker and C. Kalle.
This is joint work with V. Komornik, D. Kong and W. Li.
Given $x\in(0, 1]$, let ${\mathcal U}(x)$ be the set of bases $\beta\in(1,2]$ for which there exists a unique sequence $(d_i)$ of zeros and ones such that $x=\sum_{i=1}^{\infty}{{d_i}/{\beta^i}}$. In 2014, Lü, Tan and Wu proved that ${\mathcal U}(x)$ is a Lebesgue null set of full Hausdorff dimension. In this talk, we will show that the algebraic sum ${\mathcal U}(x)+\lambda {\mathcal U}(x)$, and the product ${\mathcal U}(x)\cdot {\mathcal ...

28A80 ; 11A63 ; 37B10

... Lire [+]

Z