m

F Nous contacter

0

Documents  62F15 | enregistrements trouvés : 73

O

-A +A

P Q

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools

This course presents an overview of modern Bayesian strategies for solving imaging inverse problems. We will start by introducing the Bayesian statistical decision theory framework underpinning Bayesian analysis, and then explore efficient numerical methods for performing Bayesian computation in large-scale settings. We will pay special attention to high-dimensional imaging models that are log-concave w.r.t. the unknown image, related to so-called “convex imaging problems”. This will provide an opportunity to establish connections with the convex optimisation and machine learning approaches to imaging, and to discuss some of their relative strengths and drawbacks. Examples of topics covered in the course include: efficient stochastic simulation and optimisation numerical methods that tightly combine proximal convex optimisation with Markov chain Monte Carlo techniques; strategies for estimating unknown model parameters and performing model selection, methods for calculating Bayesian confidence intervals for images and performing uncertainty quantification analyses; and new theory regarding the role of convexity in maximum-a-posteriori and minimum-mean-square-error estimation. The theory, methods, and algorithms are illustrated with a range of mathematical imaging experiments. This course presents an overview of modern Bayesian strategies for solving imaging inverse problems. We will start by introducing the Bayesian statistical decision theory framework underpinning Bayesian analysis, and then explore efficient numerical methods for performing Bayesian computation in large-scale settings. We will pay special attention to high-dimensional imaging models that are log-concave w.r.t. the unknown image, related to ...

49N45 ; 65C40 ; 65C60 ; 65J22 ; 68U10 ; 62C10 ; 62F15 ; 94A08

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Probability and Statistics

In this short course, we recall the basics of Markov chain Monte Carlo (Gibbs & Metropolis sampelrs) along with the most recent developments like Hamiltonian Monte Carlo, Rao-Blackwellisation, divide & conquer strategies, pseudo-marginal and other noisy versions. We also cover the specific approximate method of ABC that is currently used in many fields to handle complex models in manageable conditions, from the original motivation in population genetics to the several reinterpretations of the approach found in the recent literature. Time allowing, we will also comment on the programming developments like BUGS, STAN and Anglican that stemmed from those specific algorithms. In this short course, we recall the basics of Markov chain Monte Carlo (Gibbs & Metropolis sampelrs) along with the most recent developments like Hamiltonian Monte Carlo, Rao-Blackwellisation, divide & conquer strategies, pseudo-marginal and other noisy versions. We also cover the specific approximate method of ABC that is currently used in many fields to handle complex models in manageable conditions, from the original motivation in population ...

65C05 ; 65C40 ; 60J10 ; 62F15

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research School

This tutorial will be a beginner’s introduction to Bayesian statistical modelling and analysis. Simple models and computational tools will be described, followed by a discussion about implementing these approaches in practice. A range of case studies will be presented and possible solutions proposed, followed by an open discussion about other ways that these problems could be tackled.

62C10 ; 62F15 ; 62P12 ; 62P10

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks

Data mining methods based on finite mixture models are quite common in many areas of applied science, such as marketing, to segment data and to identify subgroups with specific features. Recent work shows that these methods are also useful in micro econometrics to analyze the behavior of workers in labor markets. Since these data are typically available as time series with discrete states, clustering kernels based on Markov chains with group-specific transition matrices are applied to capture both persistence in the individual time series as well as cross-sectional unobserved heterogeneity. Markov chains clustering has been applied to data from the Austrian labor market, (a) to understanding the effect of labor market entry conditions on long-run career developments for male workers (Frühwirth-Schnatter et al., 2012), (b) to study mothers’ long-run career patterns after first birth (Frühwirth-Schnatter et al., 2016), and (c) to study the effects of a plant closure on future career developments for male worker (Frühwirth-Schnatter et al., 2018). To capture non- stationary effects for the later study, time-inhomogeneous Markov chains based on time-varying group specific transition matrices are introduced as clustering kernels. For all applications, a mixture-of-experts formulation helps to understand which workers are likely to belong to a particular group. Finally, it will be shown that Markov chain clustering is also useful in a business application in marketing and helps to identify loyal consumers within a customer relationship management (CRM) program. Data mining methods based on finite mixture models are quite common in many areas of applied science, such as marketing, to segment data and to identify subgroups with specific features. Recent work shows that these methods are also useful in micro econometrics to analyze the behavior of workers in labor markets. Since these data are typically available as time series with discrete states, clustering kernels based on Markov chains with ...

62C10 ; 62M05 ; 62M10 ; 62H30 ; 62P20 ; 62F15

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.


ISBN 978-90-277-2394-9

The university of western ontario series in philosophy of science , 0035

Localisation : Colloque 1er étage (LOND)

inference bayesienne # inference parametrique # inference statistique # regression # statistique

62-06 ; 62F15 ; 62Fxx ; 62Gxx ; 62Jxx

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.


ISBN 978-90-277-2579-0

Fundamental theories of physics

Localisation : Colloque 1er étage (LARA)

statistique bayesine # tropie

62A15 ; 62C10 ; 62F15 ; 94A17

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 418 p.
ISBN 978-2-7108-0813-8

Localisation : Colloque 1er étage (MARS)

statistique # méthode bayésienne # probabilité à postériori # Bayes # inférence bayesienne # analyse bayésienne # distribution à priori # test d'hypothèse # estimateur bayésien # propriété asymptotique # série temporelle # BOOTSTRAP

62-06 ; 62C10 ; 62F15

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 202 p.
ISBN 978-0-387-00136-4

Lecture notes in statistics , 0173

Localisation : Colloque 1er étage (AALB)

statistique # statistique spatiale # simulation # génération aléatoire # inférence bayesienne # processus spatial # chaîne de Markov # Monte Carlo # MCMC # analyse d'image # analyse de variance # géostatistique

62-02 ; 62-06 ; 62F15 ; 62H11 ; 62J10 ; 62M30 ; 62M40

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- viii; 299 p.
ISBN 978-0-521-51346-3

Cambridge series in statistical and probabilistic mathematics

Localisation : Colloque 1er étage (CAMB)

inférence bayésienne # inférence non-paramétrique # problème bayesien

62F15 ; 62G99 ; 62-06 ; 62C10 ; 00B25

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools

This course presents an overview of modern Bayesian strategies for solving imaging inverse problems. We will start by introducing the Bayesian statistical decision theory framework underpinning Bayesian analysis, and then explore efficient numerical methods for performing Bayesian computation in large-scale settings. We will pay special attention to high-dimensional imaging models that are log-concave w.r.t. the unknown image, related to so-called “convex imaging problems”. This will provide an opportunity to establish connections with the convex optimisation and machine learning approaches to imaging, and to discuss some of their relative strengths and drawbacks. Examples of topics covered in the course include: efficient stochastic simulation and optimisation numerical methods that tightly combine proximal convex optimisation with Markov chain Monte Carlo techniques; strategies for estimating unknown model parameters and performing model selection, methods for calculating Bayesian confidence intervals for images and performing uncertainty quantification analyses; and new theory regarding the role of convexity in maximum-a-posteriori and minimum-mean-square-error estimation. The theory, methods, and algorithms are illustrated with a range of mathematical imaging experiments. This course presents an overview of modern Bayesian strategies for solving imaging inverse problems. We will start by introducing the Bayesian statistical decision theory framework underpinning Bayesian analysis, and then explore efficient numerical methods for performing Bayesian computation in large-scale settings. We will pay special attention to high-dimensional imaging models that are log-concave w.r.t. the unknown image, related to ...

49N45 ; 65C40 ; 65C60 ; 65J22 ; 68U10 ; 62C10 ; 62F15 ; 94A08

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools

This course presents an overview of modern Bayesian strategies for solving imaging inverse problems. We will start by introducing the Bayesian statistical decision theory framework underpinning Bayesian analysis, and then explore efficient numerical methods for performing Bayesian computation in large-scale settings. We will pay special attention to high-dimensional imaging models that are log-concave w.r.t. the unknown image, related to so-called “convex imaging problems”. This will provide an opportunity to establish connections with the convex optimisation and machine learning approaches to imaging, and to discuss some of their relative strengths and drawbacks. Examples of topics covered in the course include: efficient stochastic simulation and optimisation numerical methods that tightly combine proximal convex optimisation with Markov chain Monte Carlo techniques; strategies for estimating unknown model parameters and performing model selection, methods for calculating Bayesian confidence intervals for images and performing uncertainty quantification analyses; and new theory regarding the role of convexity in maximum-a-posteriori and minimum-mean-square-error estimation. The theory, methods, and algorithms are illustrated with a range of mathematical imaging experiments. This course presents an overview of modern Bayesian strategies for solving imaging inverse problems. We will start by introducing the Bayesian statistical decision theory framework underpinning Bayesian analysis, and then explore efficient numerical methods for performing Bayesian computation in large-scale settings. We will pay special attention to high-dimensional imaging models that are log-concave w.r.t. the unknown image, related to ...

49N45 ; 65C40 ; 65C60 ; 65J22 ; 68U10 ; 62C10 ; 62F15 ; 94A08

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Partial Differential Equations;Mathematics in Science and Technology;Probability and Statistics

The flexibility of the Bayesian approach to uncertainty, and its notable practical successes, have made it an increasingly popular tool for uncertainty quantification. The scope of application has widened from the finite sample spaces considered by Bayes and Laplace to very high-dimensional systems, or even infinite-dimensional ones such as PDEs. It is natural to ask about the accuracy of Bayesian procedures from several perspectives: e.g., the frequentist questions of well-specification and consistency, or the numerical analysis questions of stability and well-posedness with respect to perturbations of the prior, the likelihood, or the data. This talk will outline positive and negative results (both classical ones from the literature and new ones due to the authors) on the accuracy of Bayesian inference. There will be a particular emphasis on the consequences for high- and infinite-dimensional complex systems. In particular, for such systems, subtle details of geometry and topology play a critical role in determining the accuracy or instability of Bayesian procedures. Joint with with Houman Owhadi and Clint Scovel (Caltech). The flexibility of the Bayesian approach to uncertainty, and its notable practical successes, have made it an increasingly popular tool for uncertainty quantification. The scope of application has widened from the finite sample spaces considered by Bayes and Laplace to very high-dimensional systems, or even infinite-dimensional ones such as PDEs. It is natural to ask about the accuracy of Bayesian procedures from several perspectives: e.g., the ...

62F15 ; 62G35

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Probability and Statistics

Approximate Bayesian computation (ABC) techniques, also known as likelihood-free methods, have become a standard tool for the analysis of complex models, primarily in population genetics. The development of new ABC methodologies is undergoing a rapid increase in the past years, as shown by multiple publications, conferences and softwares. In this lecture, we introduce some recent advances on ABC techniques, notably for model choice problems.

62F15 ; 65C60

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Probability and Statistics

Faced with data containing a large number of inter-related explanatory variables, finding ways to investigate complex multi-factorial effects is an important statistical task. This is particularly relevant for epidemiological study designs where large numbers of covariates are typically collected in an attempt to capture complex interactions between host characteristics and risk factors. A related task, which is of great interest in stratified medicine, is to use multi-omics data to discover subgroups of patients with distinct molecular phenotypes and clinical outcomes, thus providing the potential to target treatments more precisely. Flexible clustering is a natural way to tackle such problems. It can be used in an unsupervised or a semi-supervised manner by adding a link between the clustering structure and outcomes and performing joint modelling. In this case, the clustering structure is used to help predict the outcome. This latter approach, known as profile regression, has been implemented recently using a Bayesian non parametric DP modelling framework, which specifies a joint clustering model for covariates and outcome, with an additional variable selection step to uncover the variables driving the clustering (Papathomas et al, 2012). In this talk, two related issues will be discussed. Firstly, we will focus on categorical covariates, a common situation in epidemiological studies, and examine the relation between: (i) dependence structures highlighted by Bayesian partitioning of the covariate space incorporating variable selection; and (ii) log linear modelling with interaction terms, a traditional approach to model dependence. We will show how the clustering approach can be employed to assist log-linear model determination, a challenging task as the model space becomes quickly very large (Papathomas and Richardson, 2015). Secondly, we will discuss clustering as a tool for integrating information from multiple datasets, with a view to discover useful structure for prediction. In this context several related issues arise. It is clear that each dataset may carry a different amount of information for the predictive task. Methods for learning how to reweight each data type for this task will therefore be presented. In the context of multi-omics datasets, the efficiency of different methods for performing integrative clustering will also be discussed, contrasting joint modelling and stepwise approaches. This will be illustrated by analysis of genomics cancer datasets.
Joint work with Michael Papathomas and Paul Kirk.
Faced with data containing a large number of inter-related explanatory variables, finding ways to investigate complex multi-factorial effects is an important statistical task. This is particularly relevant for epidemiological study designs where large numbers of covariates are typically collected in an attempt to capture complex interactions between host characteristics and risk factors. A related task, which is of great interest in stratified ...

62F15 ; 62P10

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Probability and Statistics

The Expectation-Propagation algorithm was introduced by Minka in 2001, and is today still one of the most effective algorithms for approximate inference. It is relatively difficult to implement well but in certain cases it can give results that are almost exact, while being much faster than MCMC. In this course I will review EP and classical applications to Generalised Linear Models and Gaussian Process models. I will also introduce some recent developments, including applications of EP to ABC problems, and discuss how to parallelise EP effectively. The Expectation-Propagation algorithm was introduced by Minka in 2001, and is today still one of the most effective algorithms for approximate inference. It is relatively difficult to implement well but in certain cases it can give results that are almost exact, while being much faster than MCMC. In this course I will review EP and classical applications to Generalised Linear Models and Gaussian Process models. I will also introduce some recent ...

62F15 ; 62J12

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Probability and Statistics

Bayesian posterior distributions can be numerically intractable, even by the means of Markov Chain Monte Carlo methods. Bayesian variational methods can then be used to compute directly (and fast) a deterministic approximation of these posterior distributions. In this course, I describe the principles of the variational methods and their application in Bayesian inference, review main theoretical results and discuss their use on examples.

62F15 ; 62H12 ; 49J40

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools

This course presents an overview of modern Bayesian strategies for solving imaging inverse problems. We will start by introducing the Bayesian statistical decision theory framework underpinning Bayesian analysis, and then explore efficient numerical methods for performing Bayesian computation in large-scale settings. We will pay special attention to high-dimensional imaging models that are log-concave w.r.t. the unknown image, related to so-called “convex imaging problems”. This will provide an opportunity to establish connections with the convex optimisation and machine learning approaches to imaging, and to discuss some of their relative strengths and drawbacks. Examples of topics covered in the course include: efficient stochastic simulation and optimisation numerical methods that tightly combine proximal convex optimisation with Markov chain Monte Carlo techniques; strategies for estimating unknown model parameters and performing model selection, methods for calculating Bayesian confidence intervals for images and performing uncertainty quantification analyses; and new theory regarding the role of convexity in maximum-a-posteriori and minimum-mean-square-error estimation. The theory, methods, and algorithms are illustrated with a range of mathematical imaging experiments. This course presents an overview of modern Bayesian strategies for solving imaging inverse problems. We will start by introducing the Bayesian statistical decision theory framework underpinning Bayesian analysis, and then explore efficient numerical methods for performing Bayesian computation in large-scale settings. We will pay special attention to high-dimensional imaging models that are log-concave w.r.t. the unknown image, related to ...

49N45 ; 65C40 ; 65C60 ; 65J22 ; 68U10 ; 62C10 ; 62F15 ; 94A08

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Probability and Statistics

Les processus de Hawkes forment une classe des processus ponctuels pour lesquels l'intensité s'écrit comme :

$\lambda(t)= \int_{0}^{t^-} h(t-s)dN_s +\nu$

où $N$ représente le processus de Hawkes, et $\nu > 0$. Les processus de Hawkes multivariés ont une intensité similaire sauf que des interractions entre les différentes composantes du processus de Hawkes sont autorisées. Les paramètres de ce modèle sont donc les fonctions d'interractions $h_{k,\ell}, k, \ell \le M$ et les constantes $\nu_\ell, \ell \le M$. Dans ce travail nous étudions une approche bayésienne nonparamétrique pour estimer les fonctions $h_{k,\ell}$ et les constantes $\nu_\ell$. Nous présentons un théorème général caractérisant la vitesse de concentration de la loi a posteriori dans de tels modèles. L'intérêt de cette approche est qu'elle permet la caractérisation de la convergence en norme $L_1$ et demande assez peu d'hypothèses sur la forme de la loi a priori. Une caractérisation de la convergence en norme $L_2$ est aussi considérée. Nous étudierons un exemple de lois a priori adaptées à l'étude des interractions neuronales. Travail en collaboration avec S. Donnet et V. Rivoirard.
Les processus de Hawkes forment une classe des processus ponctuels pour lesquels l'intensité s'écrit comme :

$\lambda(t)= \int_{0}^{t^-} h(t-s)dN_s +\nu$

où $N$ représente le processus de Hawkes, et $\nu > 0$. Les processus de Hawkes multivariés ont une intensité similaire sauf que des interractions entre les différentes composantes du processus de Hawkes sont autorisées. Les paramètres de ce modèle sont donc les fonctions d'interractions ...

62Gxx ; 62G05 ; 62F15 ; 62G20

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Mathematics in Science and Technology;Probability and Statistics

Geneticists have always been aware that, when looking for signal across the entire genome, one has to be very careful to avoid false discoveries. Contemporary studies often involve a very large number of traits, increasing the challenges of "looking every-where". I will discuss novel approaches that allow an adaptive exploration of the data, while guaranteeing reproducible results.

62F15 ; 62J15 ; 62P10 ; 92D10

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research School

This is a short introduction to the many directions of current research in Bayesian computational statistics, from accelerating MCMC algorithms, to using partly deterministic Markov processes like the bouncy particle and the zigzag samplers, to approximating the target or the proposal distributions in such methods. The main illustration focuses on the evaluation of normalising constants and ratios of normalising constants.

62C10 ; 65C60 ; 62F15 ; 65C05

... Lire [+]

Z