m

Documents  Climenhaga, Vaughn | enregistrements trouvés : 7

O
     

-A +A

P Q

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools;Dynamical Systems and Ordinary Differential Equations

Rufus Bowen introduced the specification property for uniformly hyperbolic dynamical systems and used it to establish uniqueness of equilibrium states, including the measure of maximal entropy. After reviewing Bowen's argument, we will present our recent work on extending Bowen's approach to non-uniformly hyperbolic systems. We will describe the general result, which makes precise the notion of "entropy (orpressure) of obstructions to specification" using a decomposition of the space of finite-length orbit segments, and then survey various applications, including factors of beta-shifts, derived-from-Anosov diffeomorphisms, and geodesic flows in non-positive curvature and beyond. Rufus Bowen introduced the specification property for uniformly hyperbolic dynamical systems and used it to establish uniqueness of equilibrium states, including the measure of maximal entropy. After reviewing Bowen's argument, we will present our recent work on extending Bowen's approach to non-uniformly hyperbolic systems. We will describe the general result, which makes precise the notion of "entropy (orpressure) of obstructions to s...

37D35 ; 37B10 ; 37B40

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools;Dynamical Systems and Ordinary Differential Equations

Rufus Bowen introduced the specification property for uniformly hyperbolic dynamical systems and used it to establish uniqueness of equilibrium states, including the measure of maximal entropy. After reviewing Bowen's argument, we will present our recent work on extending Bowen's approach to non-uniformly hyperbolic systems. We will describe the general result, which makes precise the notion of "entropy (orpressure) of obstructions to specification" using a decomposition of the space of finite-length orbit segments, and then survey various applications, including factors of beta-shifts, derived-from-Anosov diffeomorphisms, and geodesic flows in non-positive curvature and beyond. Rufus Bowen introduced the specification property for uniformly hyperbolic dynamical systems and used it to establish uniqueness of equilibrium states, including the measure of maximal entropy. After reviewing Bowen's argument, we will present our recent work on extending Bowen's approach to non-uniformly hyperbolic systems. We will describe the general result, which makes precise the notion of "entropy (orpressure) of obstructions to s...

37D35 ; 37B10 ; 37B40

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools;Dynamical Systems and Ordinary Differential Equations

Rufus Bowen introduced the specification property for uniformly hyperbolic dynamical systems and used it to establish uniqueness of equilibrium states, including the measure of maximal entropy. After reviewing Bowen's argument, we will present our recent work on extending Bowen's approach to non-uniformly hyperbolic systems. We will describe the general result, which makes precise the notion of "entropy (orpressure) of obstructions to specification" using a decomposition of the space of finite-length orbit segments, and then survey various applications, including factors of beta-shifts, derived-from-Anosov diffeomorphisms, and geodesic flows in non-positive curvature and beyond. Rufus Bowen introduced the specification property for uniformly hyperbolic dynamical systems and used it to establish uniqueness of equilibrium states, including the measure of maximal entropy. After reviewing Bowen's argument, we will present our recent work on extending Bowen's approach to non-uniformly hyperbolic systems. We will describe the general result, which makes precise the notion of "entropy (orpressure) of obstructions to s...

37D35 ; 37B10 ; 37B40

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Dynamical Systems and Ordinary Differential Equations

For negatively curved Riemannian manifolds, Margulis gave an asymptotic formula for the number of closed geodesics with length below a given threshold. I will describe joint work with Gerhard Knieper and Khadim War in which we obtain the corresponding result for surfaces without conjugate points by first proving uniqueness of the measure of maximal entropy and then following the approach of recent work by Russell Ricks, who established the asymptotic estimates in the setting of CAT(0) geodesic flows. For negatively curved Riemannian manifolds, Margulis gave an asymptotic formula for the number of closed geodesics with length below a given threshold. I will describe joint work with Gerhard Knieper and Khadim War in which we obtain the corresponding result for surfaces without conjugate points by first proving uniqueness of the measure of maximal entropy and then following the approach of recent work by Russell Ricks, who established the ...

53D25 ; 37D40

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- xv; 286 p.
ISBN 978-0-8218-4679-7

Student mathematical library , 0046

Localisation : Collection 1er étage

surface # géométrie différentielle # classification topologique des surfaces # métrique de Riemann # triangulation

51-01 ; 53-01 ; 57N05 ; 53A05 ; 57R05 ; 53-02

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- xvi; 314 p.
ISBN 978-0-8218-4889-0

Student mathematical library , 0052

Localisation : Collection 1er étage

système dynamique # fractales # théorie de la dimension # ensemble de Cantor # dimension de Hausdorff # dynamique symbolique # mesure de Markov # entropie # exposants de Lyapunov # bifurcation # hyperbolicité # attracteur # chaos # modèle de Nagumo # système de Lorenz d'équations différentielles

37-01 ; 37C45 ; 37B10 ; 37D20 ; 37E05

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- xix; 420 p.
ISBN 978-1-4704-3479-3

Student mathematical library , 0081

Localisation : Collection 1er étage

théorie des groupes # théorie des nombres # topologie

20-01 ; 51-01 ; 20F65 ; 22E40 ; 51M05 ; 51M10 ; 54H15 ; 57M10 ; 57M60

... Lire [+]

Z