m

F Nous contacter

0

Documents : Multi angle  Conférences Vidéo | enregistrements trouvés : 200

O

-A +A

P Q

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools

This course presents an overview of modern Bayesian strategies for solving imaging inverse problems. We will start by introducing the Bayesian statistical decision theory framework underpinning Bayesian analysis, and then explore efficient numerical methods for performing Bayesian computation in large-scale settings. We will pay special attention to high-dimensional imaging models that are log-concave w.r.t. the unknown image, related to so-called “convex imaging problems”. This will provide an opportunity to establish connections with the convex optimisation and machine learning approaches to imaging, and to discuss some of their relative strengths and drawbacks. Examples of topics covered in the course include: efficient stochastic simulation and optimisation numerical methods that tightly combine proximal convex optimisation with Markov chain Monte Carlo techniques; strategies for estimating unknown model parameters and performing model selection, methods for calculating Bayesian confidence intervals for images and performing uncertainty quantification analyses; and new theory regarding the role of convexity in maximum-a-posteriori and minimum-mean-square-error estimation. The theory, methods, and algorithms are illustrated with a range of mathematical imaging experiments. This course presents an overview of modern Bayesian strategies for solving imaging inverse problems. We will start by introducing the Bayesian statistical decision theory framework underpinning Bayesian analysis, and then explore efficient numerical methods for performing Bayesian computation in large-scale settings. We will pay special attention to high-dimensional imaging models that are log-concave w.r.t. the unknown image, related to ...

49N45 ; 65C40 ; 65C60 ; 65J22 ; 68U10 ; 62C10 ; 62F15 ; 94A08

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools

68Q25 ; 68Q42 ; 68Q87 ; 90C39 ; 92D20 ; 92C40

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks

Given a line bundle $L$ over a real Riemann surface, we study the number of real zeros of a random section of $L$. We prove a rarefaction result for sections whose number of real zeros deviates from the expected one.

32A60 ; 60D05 ; 53C65

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks

We give a new, more conceptual proof of the Decomposition Theorem for semisimple perverse sheaves of rank-one origin, assuming it for those of constant-sheaf origin, that is, assuming the geometric case proven by Beilinson-Bernstein-Deligne-Gabber. Joint work with Botong Wang.

14C30 ; 14F05 ; 14F43 ; 14D07

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks

The algebra $U(gl_n)$ contains a famous and beautiful commutative subalgebra, called the Gelfand-Tsetlin subalgebra. One problem which has attracted great attention over the recent decades is to classify the simple modules on which this subalgebra acts locally finitely (the Gelfand-Tsetlin modules). In investigating this question, Futorny and Ovsienko expanded attention to a generalization of these algebras, saddled with the unfortunate name of “principal Galois orders”. I’ll explain how all interesting known examples of these (and some unknown ones, such as the rational Cherednik algebras of $G(l,p,n)!)$ are the Coulomb branches of N = 4 3D gauge theories, and how this perspective allows us to classify the simple Gelfand-Tsetlin modules for $U(gl_n)$ and Cherednik algebras and explain the Koszul duality between Higgs and Coulomb categories O. The algebra $U(gl_n)$ contains a famous and beautiful commutative subalgebra, called the Gelfand-Tsetlin subalgebra. One problem which has attracted great attention over the recent decades is to classify the simple modules on which this subalgebra acts locally finitely (the Gelfand-Tsetlin modules). In investigating this question, Futorny and Ovsienko expanded attention to a generalization of these algebras, saddled with the unfortunate name of ...

17B10 ; 17B37

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks

I will discuss applications of geometric representation theory to topological and quantum invariants of character stacks. In particular, I will explain how generalized Springer correspondence for class $D$-modules and Koszul duality for Hecke categories encode surprising structure underlying the homology of character stacks of surfaces (joint work with David Ben-Zvi and David Nadler). I will then report on some work in progress with David Jordan and Pavel Safronov concerning a q-analogue of these ideas. The applications include an approach towards Witten’s conjecture on the fi dimensionality of skein modules, and methods for computing these dimensions in certain cases. I will discuss applications of geometric representation theory to topological and quantum invariants of character stacks. In particular, I will explain how generalized Springer correspondence for class $D$-modules and Koszul duality for Hecke categories encode surprising structure underlying the homology of character stacks of surfaces (joint work with David Ben-Zvi and David Nadler). I will then report on some work in progress with David Jordan ...

14F10 ; 14D23

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks

​Multiwave aspects of thermoacoustic imaging and range verification during particle therapy will be discussed.
Thermoacoustic images are generated from acoustic pulses induced by heating due to lossy electromagnetic wave propagation. Quantitative thermoacoustic imaging is feasible when the electric field pattern can be accurately modeled throughout the imaging field of view and delivered quickly enough to ensure stress confinement.
Therapeutic ions slow from relativistic speeds to a dead stop within nanoseconds, generating extraordinarily high temperature and pressure spikes within a thermal core of nanometer diameter along their tracks.
Possibilities for utilizing these phenomena to verify the ion beam location within the patient will be considered.
​Multiwave aspects of thermoacoustic imaging and range verification during particle therapy will be discussed.
Thermoacoustic images are generated from acoustic pulses induced by heating due to lossy electromagnetic wave propagation. Quantitative thermoacoustic imaging is feasible when the electric field pattern can be accurately modeled throughout the imaging field of view and delivered quickly enough to ensure stress confinement.
Therapeutic ...

35L05 ; 35R30 ; 92C55 ; 92C50

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Outreach

​L'intérêt pour l'intelligence artificielle (IA) s'est considérablement accru ces dernières années et l'IA a été appliquée avec succès à des problèmes de société. Le Big Data, le recueil et l’analyse des données, la statistique se penchent sur l’amélioration de la société de demain. Big Data en santé publique, dans le domaine de la justice pénale, de la sécurité aéroportuaire, des changements climatiques, de la protection des espèces en voie de disparition, etc.

​C'est sur ces grands défis actuels et à venir que se penche Kerrie Mengersen, statisticienne australienne en résidence pour six mois au Cirm-Luminy (titulaire de la Chaire Jean-Morlet), aux côtés de Pierre Pudlo, Mathématicien à Aix-Marseille Université.

​La Chaire Jean-Morlet et le Cirm profitent de la richesse scientifique de cette résidence de chercheurs pour proposer une conférence à destination des lycéens et étudiants : seront ainsi abordées les différentes problématiques pour lesquelles l'intelligence artificielle et le big data jouent un rôle considérable.
​L'intérêt pour l'intelligence artificielle (IA) s'est considérablement accru ces dernières années et l'IA a été appliquée avec succès à des problèmes de société. Le Big Data, le recueil et l’analyse des données, la statistique se penchent sur l’amélioration de la société de demain. Big Data en santé publique, dans le domaine de la justice pénale, de la sécurité aéroportuaire, des changements climatiques, de la protection des espèces en voie de ...

68Txx ; 62-07

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Outreach

​L'intérêt pour l'intelligence artificielle (IA) s'est considérablement accru ces dernières années et l'IA a été appliquée avec succès à des problèmes de société. Le Big Data, le recueil et l’analyse des données, la statistique se penchent sur l’amélioration de la société de demain. Big Data en santé publique, dans le domaine de la justice pénale, de la sécurité aéroportuaire, des changements climatiques, de la protection des espèces en voie de disparition, etc.

​C'est sur ces grands défis actuels et à venir que se penche Kerrie Mengersen, statisticienne australienne en résidence pour six mois au Cirm-Luminy (titulaire de la Chaire Jean-Morlet), aux côtés de Pierre Pudlo, Mathématicien à Aix-Marseille Université.

​La Chaire Jean-Morlet et le Cirm profitent de la richesse scientifique de cette résidence de chercheurs pour proposer une conférence à destination des lycéens et étudiants : seront ainsi abordées les différentes problématiques pour lesquelles l'intelligence artificielle et le big data jouent un rôle considérable.
​L'intérêt pour l'intelligence artificielle (IA) s'est considérablement accru ces dernières années et l'IA a été appliquée avec succès à des problèmes de société. Le Big Data, le recueil et l’analyse des données, la statistique se penchent sur l’amélioration de la société de demain. Big Data en santé publique, dans le domaine de la justice pénale, de la sécurité aéroportuaire, des changements climatiques, de la protection des espèces en voie de ...

68Txx ; 62-07

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Outreach

​L'intérêt pour l'intelligence artificielle (IA) s'est considérablement accru ces dernières années et l'IA a été appliquée avec succès à des problèmes de société. Le Big Data, le recueil et l’analyse des données, la statistique se penchent sur l’amélioration de la société de demain. Big Data en santé publique, dans le domaine de la justice pénale, de la sécurité aéroportuaire, des changements climatiques, de la protection des espèces en voie de disparition, etc.

​C'est sur ces grands défis actuels et à venir que se penche Kerrie Mengersen, statisticienne australienne en résidence pour six mois au Cirm-Luminy (titulaire de la Chaire Jean-Morlet), aux côtés de Pierre Pudlo, Mathématicien à Aix-Marseille Université.

​La Chaire Jean-Morlet et le Cirm profitent de la richesse scientifique de cette résidence de chercheurs pour proposer une conférence à destination des lycéens et étudiants : seront ainsi abordées les différentes problématiques pour lesquelles l'intelligence artificielle et le big data jouent un rôle considérable.
​L'intérêt pour l'intelligence artificielle (IA) s'est considérablement accru ces dernières années et l'IA a été appliquée avec succès à des problèmes de société. Le Big Data, le recueil et l’analyse des données, la statistique se penchent sur l’amélioration de la société de demain. Big Data en santé publique, dans le domaine de la justice pénale, de la sécurité aéroportuaire, des changements climatiques, de la protection des espèces en voie de ...

68Txx ; 62-07

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Outreach

Présentation du contexte général de l'"Open Science" (historique, principes, acteurs et vocabulaire) et des enjeux liés aux données de la recherche (traçabilité, reproductibilité, intégrité scientifique) / J. Janody
Projets nationaux et internationaux et recommandations des agences de financement de la recherche / B. Sampité

68M11 ; 68P05

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks

Character varieties of closed surfaces have a natural Poisson structure whose quantization may be constructed in terms of the corresponding quantum group. When the quantum parameter is a root of unity, this quantization carries a central subalgebra isomorphic to the algebra of functions on the classical character variety. In this talk I will describe a procedure which allows one to obtain Azumaya algebras via quantum Hamiltonian reduction. As an application, I will show that quantizations of character varieties at roots of unity are Azumaya over the corresponding classical character varieties.
This is a report on joint work with Iordan Ganev and David Jordan.
Character varieties of closed surfaces have a natural Poisson structure whose quantization may be constructed in terms of the corresponding quantum group. When the quantum parameter is a root of unity, this quantization carries a central subalgebra isomorphic to the algebra of functions on the classical character variety. In this talk I will describe a procedure which allows one to obtain Azumaya algebras via quantum Hamiltonian reduction. As an ...

17B63 ; 14F05 ; 14L24 ; 16T20

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools

Aim of the lecture is to give an introduction to $K3$ surfaces, that are special algebraic surfaces with an extremely rich geometry. The most easy example of such a surface is the Fermat quartic in complex three-dimensional space.
The name $K3$ was given by André Weil in 1958 in honour of the three remarkable mathematicians: Kummer, Kähler and Kodaira and of the beautiful K2 mountain at Cachemire.
The topics of the lecture are the following:

* $K3$ surfaces in the Enriques-Kodaira classification.
* Examples; Kummer surfaces.
* Basic properties of $K3$ surfaces; Torelli theorem and surjectivity of the period map.
* The study of automorphisms on $K3$ surfaces: basic facts, examples.
* Symplectic automorphisms of $K3$ surfaces, classification, moduli spaces.
Aim of the lecture is to give an introduction to $K3$ surfaces, that are special algebraic surfaces with an extremely rich geometry. The most easy example of such a surface is the Fermat quartic in complex three-dimensional space.
The name $K3$ was given by André Weil in 1958 in honour of the three remarkable mathematicians: Kummer, Kähler and Kodaira and of the beautiful K2 mountain at Cachemire.
The topics of the lecture are the following:

* ...

14J10 ; 14J28 ; 14J50 ; 14C20 ; 14C22 ; 14J27 ; 14L30

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks

(Work in collaboration with C. Bardos and I. Moyano). Consider the linear Boltzmann equation of radiative transfer in a half-space, with constant scattering coefficient $\sigma$. Assume that, on the boundary of the half-space, the radiation intensity satisfies the Lambert (i.e. diffuse) reflection law with albedo coefficient $\alpha$. Moreover, assume that there is a temperature gradient on the boundary of the half-space, which radiates energy in the half-space according to the Stefan-Boltzmann law. In the asymptotic regime where $\sigma \to +\infty$ and $1 − \alpha ∼ C/\sigma$, we prove that the radiation pressure exerted on the boundary of the half-space is governed by a fractional diffusion equation. This result provides an example of fractional diffusion asymptotic limit of
a kinetic model which is based on the harmonic extension definition of $\sqrt{−\Delta}$. This fractional diffusion limit therefore differs from most of other such limits for kinetic models reported in the literature, which are based on specific properties of the equilibrium distributions (“heavy tails”) or of the scattering coefficient as in [U. Frisch-H. Frisch: Mon. Not. R. Astr. Not. 181 (1977), 273-280].
(Work in collaboration with C. Bardos and I. Moyano). Consider the linear Boltzmann equation of radiative transfer in a half-space, with constant scattering coefficient $\sigma$. Assume that, on the boundary of the half-space, the radiation intensity satisfies the Lambert (i.e. diffuse) reflection law with albedo coefficient $\alpha$. Moreover, assume that there is a temperature gradient on the boundary of the half-space, which radiates energy ...

45K05 ; 45M05 ; 35R11 ; 82C70 ; 85A25 ; 35Q20

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks

I will discuss a joint work with Jose Canizo, Cao Chuqi and Havva Yolda. I will introduce Harris’s theorem which is a classical theorem from the study of Markov Processes. Then I will discuss how to use this to show convergence to equilibrium for some spatially inhomogeneous kinetic equations involving jumps including jump processes which approximate diffusion or fractional diffusion in velocity. This is the situation in which the tools of ’Hypocoercivity’ are used. I will discuss the connections to hypocoercivity theory and possible advantages and disadvantages of approaches via Harris’s theorem. I will discuss a joint work with Jose Canizo, Cao Chuqi and Havva Yolda. I will introduce Harris’s theorem which is a classical theorem from the study of Markov Processes. Then I will discuss how to use this to show convergence to equilibrium for some spatially inhomogeneous kinetic equations involving jumps including jump processes which approximate diffusion or fractional diffusion in velocity. This is the situation in which the tools of ...

35Q20 ; 35B40 ; 60J75 ; 82C40

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks

The talk will review the motivations, state of the art, recent results, and open questions on four very related PDE models related to phase transitions: Allen-Cahn, Peierls-Nabarro, Minimal surfaces, and Nonlocal Minimal surfaces. We will focus on the study of stable solutions (critical points of the corresponding energy functionals with nonnegative second variation). We will discuss new nonlocal results on stable phase transitions, explaining why the stability assumption gives stronger information in presence of nonlocal interactions. We will also comment on the open problems and obstructions in trying to make the nonlocal estimates robust as the long-range (or nonlocal) interactions become short-range (or local). The talk will review the motivations, state of the art, recent results, and open questions on four very related PDE models related to phase transitions: Allen-Cahn, Peierls-Nabarro, Minimal surfaces, and Nonlocal Minimal surfaces. We will focus on the study of stable solutions (critical points of the corresponding energy functionals with nonnegative second variation). We will discuss new nonlocal results on stable phase transitions, explaining ...

82B26 ; 49Q05 ; 53A10 ; 35B35 ; 35R11

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks

Malgré les succès de la théorie de Hodge non abélienne de Corlette-Simpson pour exclure que de nombreux groupes de présentation finie soient groupes fondamentaux de variétés projectives lisses (ou des groupes Kähleriens), les techniques de construction manquent. La construction de Campana du groupe fondamental orbifold d'une paire orbifolde permet de considérer le groupe fondamental des compactifications orbifolds d'une variété (ou champ) quasiprojective lisse donnée $U$ qui, si quelques précautions sont prises et sous des hypothèses raisonnables - mais pas toujours faciles a vérifier, est un groupe Kählerien. En choisissant bien la variété $U$, les groupes obtenus sont potentiellement intéressants et on utilise souvent des techniques inattendues pour établir les propriétés de leurs représentations linéaires. L'exposé fera un survey de cas particulièrement intrigants ou, par exemple, $U$ est un complément d'arrangement de droites, une variété localement complexe hyperbolique non compacte ou un espace de modules de courbes pointées. Malgré les succès de la théorie de Hodge non abélienne de Corlette-Simpson pour exclure que de nombreux groupes de présentation finie soient groupes fondamentaux de variétés projectives lisses (ou des groupes Kähleriens), les techniques de construction manquent. La construction de Campana du groupe fondamental orbifold d'une paire orbifolde permet de considérer le groupe fondamental des compactifications orbifolds d'une variété (ou champ) ...

14C30 ; 14J40 ; 14H30 ; 14F35 ; 32J18 ; 32J25 ; 32J27 ; 32Q30

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks

Given a representation of a reductive group, Braverman-Finkelberg-Nakajima have defined a remarkable Poisson variety called the Coulomb branch. Their construction of this space was motivated by considerations from supersymmetric gauge theories and symplectic duality. The coordinate ring of this Coulomb branch is defined as a kind of cohomological Hall algebra; thus it makes sense to develop a type of “Springer theory” to define modules over this algebra. In this talk, we will explain this BFN Springer theory and give many examples. In the toric case, we will see a beautiful combinatorics of polytopes. In the quiver case, we will see connections to the representations of quivers over power series rings. In the general case, we will explore the relations between this Springer theory and quasimap spaces. Given a representation of a reductive group, Braverman-Finkelberg-Nakajima have defined a remarkable Poisson variety called the Coulomb branch. Their construction of this space was motivated by considerations from supersymmetric gauge theories and symplectic duality. The coordinate ring of this Coulomb branch is defined as a kind of cohomological Hall algebra; thus it makes sense to develop a type of “Springer theory” to define modules over this ...

81T40 ; 81T60

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Outreach

​L'intérêt pour l'intelligence artificielle (IA) s'est considérablement accru ces dernières années et l'IA a été appliquée avec succès à des problèmes de société. Le Big Data, le recueil et l’analyse des données, la statistique se penchent sur l’amélioration de la société de demain. Big Data en santé publique, dans le domaine de la justice pénale, de la sécurité aéroportuaire, des changements climatiques, de la protection des espèces en voie de disparition, etc.

​C'est sur ces grands défis actuels et à venir que se penche Kerrie Mengersen, statisticienne australienne en résidence pour six mois au Cirm-Luminy (titulaire de la Chaire Jean-Morlet), aux côtés de Pierre Pudlo, Mathématicien à Aix-Marseille Université.

​La Chaire Jean-Morlet et le Cirm profitent de la richesse scientifique de cette résidence de chercheurs pour proposer une conférence à destination des lycéens et étudiants : seront ainsi abordées les différentes problématiques pour lesquelles l'intelligence artificielle et le big data jouent un rôle considérable.
​L'intérêt pour l'intelligence artificielle (IA) s'est considérablement accru ces dernières années et l'IA a été appliquée avec succès à des problèmes de société. Le Big Data, le recueil et l’analyse des données, la statistique se penchent sur l’amélioration de la société de demain. Big Data en santé publique, dans le domaine de la justice pénale, de la sécurité aéroportuaire, des changements climatiques, de la protection des espèces en voie de ...

68Txx ; 62-07

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools

92C40 ; 92D20 ; 92E10 ; 68Q10

... Lire [+]

Z