m
     
Multi angle

H 1 Mean field limits for Ginzburg-Landau vortices

Auteurs : Serfaty, Sylvia (Auteur de la Conférence)
CIRM (Editeur )

    Loading the player...

    Résumé : Ginzburg-Landau type equations are models for superconductivity, superfluidity, Bose-Einstein condensation, etc. A crucial feature is the presence of quantized vortices, which are topological zeroes of the complex-valued solutions. We will present a new result on the derivation of a mean-field limit equation for the dynamics of many vortices starting from the parabolic Ginzburg-Landau equation or the Gross-Pitaevskii (=Schrodinger Ginzburg-Landau) equation.

    Codes MSC :
    35Q55 - NLS-like equations (nonlinear Schrödinger)
    82D55 - Superconductors
    35Q56 - Ginzburg-Landau equations

      Informations sur la Vidéo

      Langue : Anglais
      Date de publication : 21/01/16
      Date de captation : 18/12/15
      Collection : Research talks ; Partial Differential Equations ; Mathematical Physics
      Format : MP4
      Durée : 01:05:30
      Domaine : Mathematical Physics ; PDE
      Audience : Chercheurs ; Doctorants , Post - Doctorants
      Download : https://videos.cirm-math.fr/2015-12-18_Serfaty.mp4

    Informations sur la rencontre

    Nom de la rencontre : Semiclassical analysis and non-self-adjoint operators / Analyse semi-classique et opérateurs non-autoadjoints
    Organisateurs de la rencontre : Fujiie, Setsuro ; Hérau, Frédéric ; Nicoleau, François ; Ramond, Thierry ; Viola, Joe ; Vu Ngoc, San
    Dates : 14/12/15 - 18/12/15
    Année de la rencontre : 2015
    URL Congrès : http://conferences.cirm-math.fr/1230.html

    Citation Data

    DOI : 10.24350/CIRM.V.18910903
    Cite this video as: Serfaty, Sylvia (2015). Mean field limits for Ginzburg-Landau vortices. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18910903
    URI : http://dx.doi.org/10.24350/CIRM.V.18910903


    Bibliographie

    1. Ambrosio, L., & Serfaty, S. (2008). A gradient flow approach to an evolution problem arising in superconductivity. Communications on Pure and Applied Mathematics 61(11), 1495–1539 - http://dx.doi.org/10.1002/cpa.20223

    2. Bethuel, F., Jerrard, R. L., & Smets, D. (2008). On the NLS dynamics for infinite energy vortex configurations on the plane. Revista Matemática Iberoamericana, 24(2), 671–702 - http://dx.doi.org/10.4171/RMI/552

    3. Bethuel, F., Orlandi, G., & Smets, D. (2007). Dynamics of multiple degree Ginzburg-Landau vortices. Communications in Mathematical Physics, 272(1), 229–261 - http://dx.doi.org/10.1007/s00220-007-0206-6

    4. Bethuel, F., Orlandi, G., & Smets, D. (2005). Collisions and phase-vortex interactions in dissipative Ginzburg-Landau dynamics. Duke Mathematical Journal, 130(3), 523–614 - http://dx.doi.org/10.1215/s0012-7094-05-13034-4

    5. Bethuel, F., Brézis, H., & Hélein, F. (1994). Ginzburg-Landau vortices. Boston, MA: Birkhäuser - http://dx.doi.org/10.1007/978-1-4612-0287-5

    6. Brenier, Y. (2000). Convergence of the Vlasov-Poisson system to the incompressible Euler equations, Communications in Partial Differential Equations, 25,(3-4), 737–754 - http://dx.doi.org/10.1080/03605300008821529

    7. Chapman, S. J., Rubinstein, J., & Schatzman, M. (1996). A Mean-field Model of Superconducting Vortices, European Journal of Applied Mathematics, 7(2), 97–111 - http://dx.doi.org/10.1017/s0956792500002242

    8. Colliander, J. E., & Jerrard, R. L. (1998). Vortex dynamics for the Ginzburg-Landau-Schrödinger equation. International Mathematics Research Notices, 7, 333–358 - http://dx.doi.org/10.1155/S1073792898000221

    9. Du, Q., & Zhang, P. (2003). Existence of weak solutions to some vortex density models. SIAM Journal on Mathematical Analysis, 34, 1279–1299 - http://dx.doi.org/10.1137/s0036141002408009

    10. Jerrard, R. L., & Spirn, D. (2015). Hydrodynamic limit of the Gross-Pitaevskii equation. Communications in Partial Differential Equations, 40(2), 135–190 - http://dx.doi.org/10.1080/03605302.2014.963604

    11. Jerrard, R. L., & Soner, H. M. (2002). The Jacobian and the Ginzburg-Landau functional, Calculus of Variations and Partial Differential Equations, 14(2), 151-191 - http://dx.doi.org/10.1007/s005260100093

    12. Jerrard, R. L., & Soner, H. M. (1998). Dynamics of Ginzburg-Landau vortices, Archive for Rational Mechanics and Analysis, 142(2), 99–125 - http://dx.doi.org/10.1007/s002050050085

    13. Kurzke, M., & Spirn, D. (2014). Vortex liquids and the Ginzburg-Landau equation. Forum of Mathematics, Sigma, 2(11), 63 p. - http://dx.doi.org/10.1017/fms.2014.6

    14. Lin, F. H., & Zhang, P. (2000). On the hydrodynamic limit of Ginzburg-Landau vortices. Discrete and Continuous Dynamical Systems, 6(1), 121–142 - http://dx.doi.org/10.3934/dcds.2000.6.121

    15. Lin, F. H., & Xin, J. X. (1999). On the dynamical law of the Ginzburg-Landau vortices on the plane, Communications on Pure and Applied Mathematics, 52(10), 1189–1212 - http://dx.doi.org/10.1002/(sici)1097-0312(199910)52:10%3C1189::aid-cpa1%3E3.0.co;2-t

    16. Lin, F. H., & Xin, J. X. (1999). On the incompressible fluid limit and the vortex motion law of the nonlinear Schrodinger equation, Communications in Mathematical Physics, 200(2), 249–274 - http://dx.doi.org/10.1007/s002200050529

    17. Lin, F. H. (1996). Some Dynamical Properties of Ginzburg-Landau Vortices. Communications on Pure and Applied Mathematics, 49(4), 323-359 - http://dx.doi.org/10.1002/(sici)1097-0312(199604)49:4%3C323::aid-cpa1%3E3.0.co;2-e

    18. Sandier, E., & Serfaty, S. (2004). A product estimate for Ginzburg-Landau and corollaries. Journal of Functional Analysis, 211(1), 219–244 - http://dx.doi.org/10.1016/s0022-1236(03)00199-x

    19. Sandier, E., & Serfaty, S. (2004). Gamma-convergence of gradient flows with applications to Ginzburg-Landau, Communications on Pure and Applied Mathematics, 57(12), 1627–1672 - http://dx.doi.org/10.1002/cpa.20046

    20. Serfaty, S. (2015). Mean field limits of the Gross-Pitaevskii and parabolic Ginzburg-Landau equations. - http://arxiv.org/abs/1507.03821

    21. Serfaty, S. (2007). Vortex collisions and energy-dissipation rates in the Ginzburg-Landau heat flow, part I: Study of the perturbed Ginzburg-Landau equation, Journal of the European Mathematical Society 9(2), 177–217 - http://dx.doi.org/10.4171/jems/77

    22. Serfaty, S. (2007). Vortex collisions and energy-dissipation rates in the Ginzburg-Landau heat flow, part II: The dynamics, Journal of the European Mathematical Society, 9(3), 383–426 - http://dx.doi.org/10.4171/jems/84

    23. Smets, D., Bethuel, F., & Orlandi, G. (2007). Quantization and motion law for Ginzburg-Landau vortices. Archive for Rational Mechanics and Analysis, 183(2), 315–370 - http://dx.doi.org/10.1007/s00205-006-0018-4

    24. Spirn, D. (2003). Vortex motion law for the Schrödinger-Ginzburg-Landau equations, SIAM Journal on Mathematical Analysis, 34(6), 1435–1476 - http://dx.doi.org/10.1137/s0036141001396667

    25. Spirn, D. (2002). Vortex dynamics for the full time-dependent Ginzburg-Landau equations, Communications on Pure and Applied Mathematics, 55(5), 537–581 - http://dx.doi.org/10.1002/cpa.3018

Titres de périodiques et e-books électroniques (Depuis le CIRM)

Ressources Electroniques

Books & Print journals

Recherche avancée


0
Z