F Nous contacter


H 2 Ergodic measures for subshifts with eventually constant growth

Auteurs : Fickenscher, Jon (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...
ergodic measures for subshifts interval exchange transformations bispecial words special Rauzy graphs nonstandard coloring questions of the audience

Résumé : We will consider (sub)shifts with complexity such that the difference from $n$ to $n+1$ is constant for all large $n$. The shifts that arise naturally from interval exchange transformations belong to this class. An interval exchange transformation on d intervals has at most $d/2$ ergodic probability measures. We look to establish the correct bound for shifts with constant complexity growth. To this end, we give our current bound and discuss further improvements when more assumptions are allowed. This is ongoing work with Michael Damron.

Codes MSC :
37A25 - Ergodicity, mixing, rates of mixing
37B10 - Symbolic dynamics
68R15 - Combinatorics on words

    Informations sur la Vidéo

    Langue : Anglais
    Date de publication : 31/03/16
    Date de captation : 17/03/16
    Collection : Research talks ; Combinatorics ; Computer Science ; Dynamical Systems and Ordinary Differential Equations
    Format : MP4 (.mp4) - HD
    Durée : 01:00:39
    Domaine : Combinatorics ; Dynamical Systems & ODE ; Computer Science
    Audience : Chercheurs ; Doctorants , Post - Doctorants
    Download : https://videos.cirm-math.fr/2016-03-17_Fickenscher.mp4

Informations sur la rencontre

Nom de la rencontre : Combinatorics on words / Combinatoire des mots
Organisateurs de la rencontre : Cassaigne, Julien ; Nowotka, Dirk
Dates : 14/03/16 - 18/03/16
Année de la rencontre : 2016
URL Congrès : http://conferences.cirm-math.fr/1429.html

Citation Data

DOI : 10.24350/CIRM.V.18943903
Cite this video as: Fickenscher, Jon (2016). Ergodic measures for subshifts with eventually constant growth. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18943903
URI : http://dx.doi.org/10.24350/CIRM.V.18943903

Voir aussi


  • Damron, M., & Fickenscher, J. (2015). On the number of ergodic measures for minimal shifts with eventually constant complexity growth. - http://arxiv.org/abs/1508.05952

Ressources Electroniques (Depuis le CIRM)

Books & Print journals

Recherche avancée