Multi angle

H 1 New examples of rigid varieties and criteria for fibred surfaces to be $K(\pi,1)$-spaces

Auteurs : Catanese, Fabrizio (Auteur de la Conférence)
CIRM (Editeur )

    Loading the player...

    Résumé : Given an algebraic variety defined by a set of equations, an upper bound for its dimension at one point is given by the dimension of the Zariski tangent space. The infinitesimal deformations of a variety $X$ play a somehow similar role, they yield the Zariski tangent space at the local moduli space, when this exists, hence one gets an efficient way to estimate the dimension of a moduli space.
    It may happen that this moduli space consists of a point, or even a reduced point if there are no infinitesimal deformations. In this case one says that $X$ is rigid, respectively inifinitesimally rigid.
    A basic example is projective space, which is the only example in dimension 1. In the case of surfaces, infinitesimally rigid surfaces are either the Del Pezzo surfaces of degree $\ge$ 5, or are some minimal surfaces of general type.
    As of now, the known surfaces of the second type are all projective classifying spaces (their universal cover is contractible), and have universal cover which is either the ball or the bidisk (these are the noncompact duals of $P^2$ and $P^1 \times P^1$ ), or are the examples of Mostow and Siu, or the Kodaira fibrations of Catanese-Rollenske.
    Motivated by recent examples constructed with Dettweiller of interesting VHS over curves, which we shall call BCD surfaces, together with ingrid Bauer, we showed the rigidity of a class of surfaces which includes the Hirzebruch-Kummer coverings of the plane branched over a complete quadrangle.
    I shall also explain some results concerning fibred surfaces, e.g. a criterion for being a $K(\pi,1)$-space; I will finish mentioning other examples and several interesting open questions.

    Codes MSC :
    14J29 - Surfaces of general type
    14J80 - Topology of surfaces (Donaldson polynomials, Seiberg-Witten invariants)
    14P25 - Topology of real algebraic varieties
    32G05 - Deformations of complex structures

      Informations sur la Vidéo

      Langue : Anglais
      Date de publication : 17/06/16
      Date de captation : 01/06/2016
      Collection : Research talks ; Algebraic and Complex Geometry
      Format : MP4
      Durée : 01:09:01
      Domaine : Algebraic & Complex Geometry
      Audience : Chercheurs ; Doctorants , Post - Doctorants
      Download : https://videos.cirm-math.fr/2016-06-01_Catanese.mp4

    Informations sur la rencontre

    Nom de la rencontre : Topology of complex algebraic varieties / Topologie des variétés algébriques complexes
    Organisateurs de la rencontre : Eyssidieux, Philippe ; Klinger, Bruno ; Kotschick, Dieter ; Toledo, Domingo
    Dates : 30/05/2016 - 03/06/2016
    Année de la rencontre : 2016
    URL Congrès : http://conferences.cirm-math.fr/1398.html

    Citation Data

    DOI : 10.24350/CIRM.V.18990403
    Cite this video as: Catanese, Fabrizio (2016). New examples of rigid varieties and criteria for fibred surfaces to be $K(\pi,1)$-spaces. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18990403
    URI : http://dx.doi.org/10.24350/CIRM.V.18990403

    Voir aussi


Titres de périodiques et e-books électroniques (Depuis le CIRM)

Ressources Electroniques

Books & Print journals

Recherche avancée