Multi angle

H 1 Discrete systolic geometry and decompositions of triangulated surfaces

Auteurs : De Mesmay, Arnaud (Auteur de la Conférence)
CIRM (Editeur )

    Loading the player...

    Résumé : How much cutting is needed to simplify the topology of a surface? We provide bounds for several instances of this question, for the minimum length of topologically non-trivial closed curves, pants decompositions, and cut graphs with a given combinatorial map in triangulated combinatorial surfaces (or their dual cross-metric counterpart).
    Our work builds upon Riemannian systolic inequalities, which bound the minimum length of non-trivial closed curves in terms of the genus and the area of the surface. We first describe a systematic way to translate Riemannian systolic inequalities to a discrete setting, and vice-versa. This implies a conjecture by Przytycka and Przytycki from 1993, a number of new systolic inequalities in the discrete setting, and the fact that a theorem of Hutchinson on the edge-width of triangulated surfaces and Gromov's systolic inequality for surfaces are essentially equivalent. We also discuss how these proofs generalize to higher dimensions.
    Then we focus on topological decompositions of surfaces. Relying on ideas of Buser, we prove the existence of pants decompositions of length $O(g^{3/2}n^{1/2})$ for any triangulated combinatorial surface of genus g with n triangles, and describe an $O(gn)$-time algorithm to compute such a decomposition.
    Finally, we consider the problem of embedding a cut graph (or more generally a cellular graph) with a given combinatorial map on a given surface. Using random triangulations, we prove (essentially) that, for any choice of a combinatorial map, there are some surfaces on which any cellular embedding with that combinatorial map has length superlinear in the number of triangles of the triangulated combinatorial surface. There is also a similar result for graphs embedded on polyhedral triangulations.
    systolic geometry - computational topology - topological graph theory - graphs on surfaces - triangulations - random graphs

    Codes MSC :
    05C10 - Planar graphs; geometric and topological aspects of graph theory
    53C23 - Global topological methods (a la Gromov)
    57M15 - Relations with graph theory, See also {05Cxx}
    68R10 - Graph theory in connection with computer science
    68U05 - Computer graphics; computational geometry

      Informations sur la Vidéo

      Langue : Anglais
      Date de publication : 28/05/14
      Date de captation : 17/12/13
      Collection : Research talks ; Combinatorics ; Computer Science ; Geometry ; Topology
      Format : quicktime ; audio/x-aac
      Durée : 00:26:08
      Domaine : Combinatorics ; Computer Science ; Geometry ; Topology
      Audience : Chercheurs ; Doctorants , Post - Doctorants
      Download : https://videos.cirm-math.fr/2013-12-17_de_Mesmay.mp4

    Informations sur la rencontre

    Nom de la rencontre : Computational geometry days / Journées de géométrie algorithmique
    Organisateurs de la rencontre : Cohen-Steiner, David ; Mérigot, Quentin
    Dates : 16/12/13 - 20/12/13
    Année de la rencontre : 2013

    Citation Data

    DOI : 10.24350/CIRM.V.18590403
    Cite this video as: De Mesmay, Arnaud (2013). Discrete systolic geometry and decompositions of triangulated surfaces. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18590403
    URI : http://dx.doi.org/10.24350/CIRM.V.18590403


Titres de périodiques et e-books électroniques (Depuis le CIRM)

Ressources Electroniques

Books & Print journals

Recherche avancée