m

F Nous contacter

0
     
Multi angle

H 1 Stable determination of coefficients in the dynamical Schrödinger equation in a magnetic field

Auteurs : Bellassoued, Mourad (Auteur de la Conférence)
CIRM (Editeur )

    Loading the player...

    Résumé : This talk is devoted to the study of the following inverse boundary value problem: given a Riemannian manifold with boundary determine the magnetic potential in a dynamical Schrödinger equation in a magnetic field from the observations made at the boundary.

    inverse problem - Schrödinger equation - magnetic field

    Codes MSC :
    35Q55 - NLS-like equations (nonlinear Schrödinger)
    35Q60 - PDEs in connection with optics and electromagnetic theory
    35R30 - Inverse problems for PDE
    35R35 - Free boundary problems

      Informations sur la Vidéo

      Langue : Français
      Date de publication : 07/01/15
      Date de captation : 11/12/14
      Collection : Research talks ; Partial Differential Equations
      Format : quicktime ; audio/x-aac
      Durée : 00:56:53
      Domaine : PDE
      Audience : Chercheurs ; Doctorants , Post - Doctorants
      Download : https://videos.cirm-math.fr/2014-12-11_Bellassoued.mp4

    Informations sur la rencontre

    Nom de la rencontre : LEM2I international conference / Colloque international du LEM2I
    Organisateurs de la rencontre : Benabdallah, Assia ; Dehman, Belhassen ; Dermenjian, Yves ; Lebeau, Gilles ; Pardoux, Etienne
    Dates : 08/12/14 - 12/12/14
    Année de la rencontre : 2014
    URL Congrès : http://lem2i-2014.sciencesconf.org/

    Citation Data

    DOI : 10.24350/CIRM.V.18653403
    Cite this video as: Bellassoued, Mourad (2014). Stable determination of coefficients in the dynamical Schrödinger equation in a magnetic field. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18653403
    URI : http://dx.doi.org/10.24350/CIRM.V.18653403


    Bibliographie

    1. Bellassoued, M., & Dos Santos Ferreira, D. (2010). Stable determination of coefficients in the dynamical anisotropic Schrödinger equation from the Dirichlet-to-Neumann map. Inverse Problems, 26(12), 30 p. - http://dx.doi.org/10.1088/0266-5611/26/12/125010

    2. Bellassoued, M., & Choulli, M. (2010). Stability estimate for an inverse problem for the magnetic Schrödinger equation from the Dirichlet-to-Neumann map. Journal of Functional Analysis, 258(1), 161-195 - http://dx.doi.org/10.1016/j.jfa.2009.06.010

    3. Bellassoued, M., & Benjoud, H. (2008). Stability estimate for an inverse problem for the wave equation in a magnetic field. Applicable Analysis: An International Journal, 87(3), 277-292 - http://dx.doi.org/10.1080/00036810801911264

Ressources Electroniques (Depuis le CIRM)

Books & Print journals

Recherche avancée


0
Z