F Nous contacter


H 2 A spectral inequality for the bi-Laplace operator

Auteurs : Robbiano, Luc (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...
bi-Laplace operator, hinged bi-Laplace operator, clamped proof for Laplace operator proof for bi-Laplace operator Carleman estimate $s=0$ Carleman estimate at $(0,S_0)\times\partial\Omega$ Three regions of case $(0,S_0)\times\partial\Omega$ questions of the audience

Résumé : In this talk we present a inequality obtained with Jérôme Le Rousseau, for sum of eigenfunctions for bi-Laplace operator with clamped boundary condition. These boundary conditions do not allow to reduce the problem for a Laplacian with adapted boundary condition. The proof follow the strategy used for Laplacian, namely we consider a problem with an extra variable and we prove Carleman estimates for this new problem. The main difficulty is to obtain a Carleman estimate up to the boundary.

Codes MSC :
35B45 - A priori estimates
35S15 - Boundary value problems for pseudodifferential operators
93B05 - Controllability
93B07 - Observability

    Informations sur la Vidéo

    Langue : Anglais
    Date de publication : 17/12/15
    Date de captation : 09/11/15
    Collection : Research talks ; Control Theory and Optimization ; Partial Differential Equations
    Format : MP4 (.mp4) - HD
    Durée : 00:54:48
    Domaine : PDE ; Control Theory & Optimization
    Audience : Chercheurs ; Doctorants , Post - Doctorants
    Download : https://videos.cirm-math.fr/2015-11-09_Robbiano.mp4

Informations sur la rencontre

Nom de la rencontre : Controllability of partial differential equations and applications / Contrôle des EDP et applications
Organisateurs de la rencontre : Dermenjian, Yves ; Cristofol, Michel ; Gaitan, Patricia ; Le Rousseau, Jérôme ; Yamamoto, Masahiro
Dates : 09/11/15 - 13/11/15
Année de la rencontre : 2015
URL Congrès : http://conferences.cirm-math.fr/1368.html

Citation Data

DOI : 10.24350/CIRM.V.18890703
Cite this video as: Robbiano, Luc (2015). A spectral inequality for the bi-Laplace operator. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18890703
URI : http://dx.doi.org/10.24350/CIRM.V.18890703


Ressources Electroniques (Depuis le CIRM)

Books & Print journals

Recherche avancée