m
     
Multi angle

H 1 Hybrid finite element methods preserving local symmetries and conservation laws

Auteurs : Stern, Ari (Auteur de la Conférence)
CIRM (Editeur )

    Loading the player...

    Résumé : Many PDEs arising in physical systems have symmetries and conservation laws that are local in space. However, classical finite element methods are described in terms of spaces of global functions, so it is difficult even to make sense of such local properties. In this talk, I will describe how hybrid finite element methods, based on non-overlapping domain decomposition, provide a way around this local-vs.-global obstacle. Specifically, I will discuss joint work with Robert McLachlan on multisymplectic hybridizable discontinuous Galerkin methods for Hamiltonian PDEs, as well as joint work with Yakov Berchenko-Kogan on symmetry-preserving hybrid finite element methods for gauge theory.

    Codes MSC :
    37K05 - Hamiltonian structures, symmetries, variational principles, conservation laws
    65N30 - Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods (BVP of PDE)

      Informations sur la Vidéo

      Langue : Anglais
      Date de publication : 05/04/2018
      Date de captation : 05/04/2018
      Collection : Research talks ; Numerical Analysis and Scientific Computing
      Format : MP4
      Durée : 00:51:33
      Domaine : Numerical Analysis & Scientific Computing
      Audience : Chercheurs ; Doctorants , Post - Doctorants
      Download : https://videos.cirm-math.fr/2018-04-05_Stern.mp4

    Informations sur la rencontre

    Nom de la rencontre : Symmetry and computation / Symétries dans les méthodes de calcul
    Organisateurs de la rencontre : Hubert, Evelyne ; Mansfield, Elizabeth ; Szanto, Agnes
    Dates : 03/04/2018 - 07/04/2018
    Année de la rencontre : 2018
    URL Congrès : https://conferences.cirm-math.fr/1772.html

    Citation Data

    DOI : 10.24350/CIRM.V.19386903
    Cite this video as: Stern, Ari (2018). Hybrid finite element methods preserving local symmetries and conservation laws. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19386903
    URI : http://dx.doi.org/10.24350/CIRM.V.19386903


    Voir aussi

    Bibliographie

    1. McLachlan, R.I., & Stern, A. (2017). Multisymplecticity of hybridizable discontinuous Galerkin methods. - https://arxiv.org/abs/1705.08609

Titres de périodiques et e-books électroniques (Depuis le CIRM)

Ressources Electroniques

Books & Print journals

Recherche avancée


0
Z