Multi angle

H 1 Polyhedral discretizations for industrial applications

Auteurs : Bonelle, Jérôme (Auteur de la Conférence)
CIRM (Editeur )

    Loading the player...

    Résumé : This talk will be devoted to the usage of new discretization schemes on polyhedral meshes in an industrial context. These discretizations called CDO [1, 2] (Compatible Discrete Operator) or Hybrid High Order [3,4] (HHO) schemes have been recently implemented in Code Saturne [5]. Code Saturne is an open-source code developed at EDF R&D aiming at simulating single-phase flows. First, the advantages of robust polyhedral discretizations will be recalled. Then, the underpinning principles of CDO schemes will be presented as well as some applications: diffusion equations, transport problems, groundwater flows or the discretization of the Stokes equations. High Performance Computing (HPC) aspects will be also discussed as it is an essential feature in an industrial context either to address complex and large computational domains or to get a quick answer. Some highlights on the main outlooks will be given to conclude.

    Codes MSC :
    65N50 - Mesh generation and refinement
    65Nxx - Partial differential equations, boundary value problems
    76S05 - Flows in porous media; filtration; seepage

    Ressources complémentaires :

      Informations sur la Vidéo

      Langue : Anglais
      Date de publication : 28/05/2019
      Date de captation : 02/05/2019
      Collection : Research talks ; Numerical Analysis and Scientific Computing ; Partial Differential Equations
      Format : MP4
      Durée : 00:38:05
      Domaine : PDE ; Numerical Analysis & Scientific Computing
      Audience : Chercheurs ; Doctorants , Post - Doctorants
      Download : https://videos.cirm-math.fr/2019-05-02_Bonelle.mp4

    Informations sur la rencontre

    Nom de la rencontre : POEMs - POlytopal Element Methods in Mathematics and Engineering
    Organisateurs de la rencontre : Antonietti, Paola ; Beirão da Veiga, Lourenço ; Di Pietro, Daniele ; Droniou, Jérôme ; Krell, Stella
    Dates : 29/04/2019 - 03/05/2019
    Année de la rencontre : 2019
    URL Congrès : https://conferences.cirm-math.fr/1954.html

    Citation Data

    DOI : 10.24350/CIRM.V.19529203
    Cite this video as: Bonelle, Jérôme (2019). Polyhedral discretizations for industrial applications. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19529203
    URI : http://dx.doi.org/10.24350/CIRM.V.19529203

    Voir aussi


    1. BONELLE, Jérôme et ERN, Alexandre. Analysis of compatible discrete operator schemes for elliptic problems on polyhedral meshes. ESAIM: Mathematical Modelling and Numerical Analysis, 2014, vol. 48, no 2, p. 553-581. - https://doi.org/10.1051/m2an/2013104

    2. Pierre Cantin, Jérôme Bonelle, Erik Burman, Alexandre Ern. A vertex-based scheme on polyhedral meshes for advection-reaction equations with sub-mesh stabilization. Computers and Mathematics with Applications, Elsevier, 2016 - https://doi.org/10.1016/j.camwa.2016.07.038

    3. Daniele Antonio Di Pietro, Alexandre Ern, Simon Lemaire. An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators. Computational Methods in Applied Mathematics, De Gruyter, 2014, 14 (4), pp.461-472. - https://doi.org/10.1515/cmam-2014-0018

    4. Daniele Di Pietro, Alexandre Ern, Alexander Linke, Friedhelm Schieweck. A discontinuous skeletal method for the viscosity-dependent Stokes problem. Computer Methods in Applied Mechanics and Engineering, Elsevier, 2016, 306, pp.175-195. - https://doi.org/10.1016/j.cma.2016.03.033

    5. Code Saturne website - https://www.code-saturne.org

Titres de périodiques et e-books électroniques (Depuis le CIRM)

Ressources Electroniques

Books & Print journals

Recherche avancée