H 2 Perturbative techniques of the dynamics in the $C^1$-topology

Auteurs : Crovisier, Sylvain (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...
dynamics of diffeomorphisms closing lemma elementary perturbation lemma selecting lemma Pugh perturbation lemma pseudo-orbit connecting lemma homoclinic classes Franks lemma geodesic flow questions of the audience

Résumé : These lectures will address the dynamics of vector fields or diffeomorphisms of compact manifolds. For the study of generic properties or for the construction of examples, it is often useful to be able to perturb a system. This generally leads to delicate problems: a local modification of the dynamics may cause a radical change in the behavior of the orbits. For the $C^1$-topology, various techniques have been developed which allow to perturb while controlling the dynamics: closing and connection of orbits, perturbation of the tangent dynamics... We derive various applications to the description of $C^1$-generic diffeomorphisms.

Codes MSC :
37C05 - Smooth mappings and diffeomorphisms
37C29 - Homoclinic and heteroclinic orbits
37Dxx - Dynamical systems with hyperbolic behavior

    Informations sur la Vidéo

    Langue : Anglais
    Date de publication : 07/04/16
    Date de captation : 21/03/16
    Collection : Research talks ; Dynamical Systems and Ordinary Differential Equations
    Format : MP4 (.mp4) - HD
    Durée : 01:09:39
    Domaine : Dynamical Systems & ODE
    Audience : Chercheurs ; Doctorants , Post - Doctorants
    Download : https://videos.cirm-math.fr/2016-03-21_Crovisier.mp4

Informations sur la rencontre

Nom de la rencontre : Dynamics of evolution equations / Systèmes dynamiques et problèmes d'évolution
Organisateurs de la rencontre : Joly, Romain ; Raugel, Geneviève ; Yi, Yingfei
Dates : 21/03/16 - 25/03/16
Année de la rencontre : 2016
URL Congrès : http://conferences.cirm-math.fr/1335.html

Citation Data

DOI : 10.24350/CIRM.V.18948803
Cite this video as: Crovisier, Sylvain (2016). Perturbative techniques of the dynamics in the $C^1$-topology. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18948803
URI : http://dx.doi.org/10.24350/CIRM.V.18948803

Voir aussi


Titres de périodiques et e-books électroniques (Depuis le CIRM)

Ressources Electroniques

Books & Print journals

Recherche avancée