Multi angle

H 1 Geometric Langlands correspondence and topological field theory - Part 2

Auteurs : Ben-Zvi, David (Auteur de la Conférence)
CIRM (Editeur )

    Loading the player...

    Résumé : Kapustin and Witten introduced a powerful perspective on the geometric Langlands correspondence as an aspect of electric-magnetic duality in four dimensional gauge theory. While the familiar (de Rham) correspondence is best seen as a statement in conformal field theory, much of the structure can be seen in the simpler (Betti) setting of topological field theory using Lurie's proof of the Cobordism Hypothesis. In these lectures I will explain this perspective and illustrate its applications to representation theory following joint work with Nadler as well as Brochier, Gunningham, Jordan and Preygel.

    Codes MSC :
    20G05 - Representation theory of linear algebraic groups
    22E46 - Semisimple Lie groups and their representations
    14D24 - Geometric Langlands program: algebro-geometric aspects
    22E57 - Geometric Langlands program: representation-theoretic aspects

      Informations sur la Vidéo

      Langue : Anglais
      Date de publication : 16/04/15
      Date de captation : 01/04/15
      Collection : Research talks ; Algebraic and Complex Geometry ; Mathematical Physics
      Format : quicktime ; audio/x-aac
      Durée : 01:25:13
      Domaine : Algebraic & Complex Geometry ; Mathematical Physics
      Audience : Chercheurs ; Doctorants , Post - Doctorants
      Download : https://videos.cirm-math.fr/2015-04-01_Ben_Zvi_part2.mp4

    Informations sur la rencontre

    Nom de la rencontre : Geometric Langlands and derived algebraic geometry / Langlands géométrique et la géométrie algébrique dérivée
    Organisateurs de la rencontre : Lysenko, Sergey ; Mirkovic, Ivan ; Riche, Simon
    Dates : 30/03/15 - 03/04/15
    Année de la rencontre : 2015
    URL Congrès : http://geomlanglands2015.weebly.com/

    Citation Data

    DOI : 10.24350/CIRM.V.18741503
    Cite this video as: Ben-Zvi, David (2015). Geometric Langlands correspondence and topological field theory - Part 2. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18741503
    URI : http://dx.doi.org/10.24350/CIRM.V.18741503

    Voir aussi


    1. [1] Witten, E. (2010). Geometric Langlands from six dimensions. - http://arxiv.org/abs/0905.2720

    2. [2] Lurie, J. (2009). On the classification of topological field theories. - http://arxiv.org/abs/0905.0465

    3. [3] Freed, D. (2012). The cobordism hypothesis. - http://arxiv.org/abs/1210.5100

    4. [4] Kapustin, A. (2010). Topological field theory, higher categories, and their applications. - http://arxiv.org/abs/1004.2307

    5. [5] Ben-Zvi, D., & Nadler, D. (2015). The character theory of a complex group. - http://arxiv.org/abs/0904.1247

    6. [6] Ben-Zvi, D., Brochier, A., & Jordan, D. (2015). Integrating quantum groups over surfaces: quantum character varieties and topological field theory. - http://arxiv.org/abs/1501.04652

Ressources Electroniques (Depuis le CIRM)

Books & Print journals

Recherche avancée