Multi angle

H 1 Growth and geometry in $SL_2(\mathbb{Z})$ dynamics

Auteurs : Veselov, Alexander (Auteur de la Conférence)
CIRM (Editeur )

    Loading the player...

    Résumé : Usual discrete dynamics can be considered as the action of the group of integers. What happens if we replace $\mathbb{Z}$ by $SL_2(\mathbb{Z})$?
    There is a classical example of such dynamics goes back to remarkable work by Andrei A. Markov (1880), who described the solutions of the Diophantine equation $x^2 + y^2 + z^2 = 3xyz$ (known now as Markov triples) as an orbit of $SL_2(\mathbb{Z})$. These triples surprisingly appeared in many areas of mathematics: initially in arithmetic, but more recently in hyperbolic and algebraic geometry, the theory of Teichmüller spaces, Frobenius manifolds and Painlevé equations.
    Another example of such dynamics appears in the description of the values of a binary quadratic form $Q(x,y) = ax^2+bxy+cy^2$ with integer coefficients, the problem going back to Gauss. About 20 years ago John H. Conway proposed a ”topographic” approach to this problem, using the planar trivalent tree, which can be considered as a discrete version of the hyperbolic plane.
    The same approach can be applied to general $SL_2(\mathbb{Z})$ dynamics, and in particular to Markov dynamics as well. The growth of the corresponding numbers depends on the paths on such tree, which can be labelled by the points of real projective line.
    I will discuss some results about the corresponding Lyapunov exponents found jointly with K. Spalding and A. Sorrentino, using the known links with the hyperbolic geometry.

    Keywords : Markov numbers; Lyapunov exponents; Farey tree; Conway river; Markov spectrum

    Codes MSC :
    11H55 - Quadratic forms (reduction theory, extreme forms, etc.)
    11J06 - Markov and Lagrange spectra and generalizations
    34D08 - Characteristic and Lyapunov exponents

      Informations sur la Vidéo

      Langue : Anglais
      Date de publication : 11/10/2018
      Date de captation : 04/10/2018
      Sous collection : Research talks
      Format : MP4
      arXiv category : Dynamical Systems ; Number Theory
      Domaine : Number Theory ; Dynamical Systems & ODE
      Durée : 00:31:42
      Audience : Chercheurs ; Doctorants , Post - Doctorants
      Download : https://videos.cirm-math.fr/2018-10-04_Veselov.mp4

    Informations sur la rencontre

    Nom de la rencontre : 6th International conference on uniform distribution theory - UDT2018 / 6e Colloque international sur la théorie de la répartition uniforme - UDT2018
    Organisateurs de la rencontre : Karpenkov, Oleg ; Nair, Radhakrishnan ; Verger-Gaugry, Jean-Louis
    Dates : 01/10/2018 - 05/10/2018
    Année de la rencontre : 2018
    URL Congrès : https://conferences.cirm-math.fr/1860.html

    Citation Data

    DOI : 10.24350/CIRM.V.19455003
    Cite this video as: Veselov, Alexander (2018). Growth and geometry in $SL_2(\mathbb{Z})$ dynamics. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19455003
    URI : http://dx.doi.org/10.24350/CIRM.V.19455003

    Voir aussi


    1. Sorrentino, A., & Veselov, A.P. (2017). Markov Numbers, Mather's β function and stable norm. - https://arxiv.org/abs/1707.03901

    2. Spalding, K., & Veselov, A.P. (2018). Growth of values of binary quadratic forms and Conway rivers. Bulletin of the London Mathematical Society, 50(3), 513-528 - https://doi.org/10.1112/blms.12156

    3. Spalding, K., & Veselov, A.P. (2018). Veselov Conway river and Arnold sail. - https://arxiv.org/abs/1801.10072

    4. Spalding, K., & Veselov, A.P. (2017). Tropical Markov dynamics and Cayley cubic. - https://arxiv.org/abs/1707.01760

    5. Spalding, K., & Veselov, A.P. (2017). Lyapunov spectrum of Markov and Euclid trees. Nonlinearity, 30(12), 4428-4453 - https://doi.org/10.1088/1361-6544/aa88ff

Titres de périodiques et e-books électroniques (Depuis le CIRM)

Ressources Electroniques

Books & Print journals

Recherche avancée