m

F Nous contacter

0

Documents  Bradlow, Steven B. | enregistrements trouvés : 8

O
     

-A +A

P Q

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Algebraic and Complex Geometry;Mathematical Physics

In this talk we will present a Verlinde formula for the quantization of the Higgs bundle moduli spaces and stacks for any simple and simply-connected group. We further present a Verlinde formula for the quantization of parabolic Higgs bundle moduli spaces and stacks. We will explain how all these dimensions fit into a one parameter family of 2D TQFT’s, encoded in a one parameter family of Frobenius algebras, which we will construct.

14D20 ; 14H60 ; 57R56 ; 81T40 ; 14F05 ; 14H10 ; 22E46 ; 81T45

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- ix; 206 p.
ISBN 978-0-8218-4750-3

Contemporary mathematics , 0522

Localisation : Collection 1er étage

fibré vectoriel # fibrés paraboliques # variétés abéliennes # schéma de Hilbert # structure de contact # théorie des indexes # théorie de Hodge # théorie des invariants géométriques

14H60 ; 14D20 ; 20G15 ; 14D07 ; 14D22 ; 58J20 ; 14C30 ; 14J60 ; 14-06 ; 00B30 ; 14Dxx

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.


ISBN 978-3-11-015594-5

Localisation : Colloque 1er étage (CAMP)

algèbre de Clifford # algèbre linéaire et multi-linéaire # application à la physique # espace de dimension infini # géométrie # géométrie différentielle locale # physique mathématique # problème variationnel # spineur # théorie générale des espaces analytiques # topologie # topologie de faible dimension

15A66 ; 32Cxx ; 53Cxx ; 57Mxx ; 58Exx

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Algebraic and Complex Geometry;Mathematical Physics

I will review a conjecture (joint work with Davide Gaiotto and Greg Moore) which gives a description of the hyperkähler metric on the moduli space of Higgs bundles, and recent joint work with David Dumas which has given evidence that the conjecture is true in the case of $SL(2)$-Higgs bundles.

32Q20 ; 53C07 ; 53C55 ; 53C26 ; 81T13 ; 81T60

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Algebraic and Complex Geometry

Following Grothendieck’s vision that a motive of an algebraic variety should capture many of its cohomological invariants, Voevodsky introduced a triangulated category of motives which partially realises this idea. After describing some of the properties of this category, I explain how to define the motive of certain algebraic stacks. I will then focus on defining and studying the motive of the moduli stack of vector bundles on a smooth projective curve and show that this motive can be described in terms of the motive of this curve and its symmetric powers. If there is time, I will give a conjectural formula for this motive, and explain how this follows from a conjecture on the intersection theory of certain Quot schemes. This is joint work with Simon Pepin Lehalleur. Following Grothendieck’s vision that a motive of an algebraic variety should capture many of its cohomological invariants, Voevodsky introduced a triangulated category of motives which partially realises this idea. After describing some of the properties of this category, I explain how to define the motive of certain algebraic stacks. I will then focus on defining and studying the motive of the moduli stack of vector bundles on a smooth ...

14A20 ; 14C25 ; 14C15 ; 14D23 ; 14F42 ; 14H60 ; 18E30 ; 19E15

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Algebraic and Complex Geometry;Mathematical Physics

In this talk I will explain recent joint work with Rafe Mazzeo, Hartmut Weiss and Frederik Witt on the asymptotics of the natural $L^2$-metric $G_{L^2}$ on the moduli space $\mathcal{M}$ of rank-2 Higgs bundles over a Riemann surface $\Sigma$ as given by the set of solutions to the so-called self-duality equations
$\begin{cases}
&0 = \bar{\partial}_A \Phi \\
& 0 = F_A + [ \Phi \wedge \Phi^*]
\end{cases}$
for a unitary connection $A$ and a Higgs field $\Phi$ on $\Sigma$. I will show that on the regular part of the Hitchin fibration ($A$, $\Phi$) $\rightarrow$ det $\Phi$ this metric is well-approximated by the semiflat metric $G_{sf}$ coming from the completely integrable system on $\mathcal{M}$. This also reveals the asymptotically conic structure of $G_{L^2}$, with (generic) fibres of the above fibration being asymptotically flat tori. This result confirms some aspects of a more general conjectural picture made by Gaiotto, Moore and Neitzke. Its proof is based on a detailed understanding of the ends structure of $\mathcal{M}$. The analytic methods used there in addition yield a complete asymptotic expansion of the difference $G_{L^2} − G_{sf}$ between the two metrics.
In this talk I will explain recent joint work with Rafe Mazzeo, Hartmut Weiss and Frederik Witt on the asymptotics of the natural $L^2$-metric $G_{L^2}$ on the moduli space $\mathcal{M}$ of rank-2 Higgs bundles over a Riemann surface $\Sigma$ as given by the set of solutions to the so-called self-duality equations
$\begin{cases}
&0 = \bar{\partial}_A \Phi \\
& 0 = F_A + [ \Phi \wedge \Phi^*]
\end{cases}$
for a unitary connection $A$ and a ...

53C07 ; 53C26 ; 53D18 ; 14H60 ; 14D20

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Algebraic and Complex Geometry

Hitchin’s equations are a system of gauge theoretic equations on a Riemann surface that are of interest in many areas including representation theory, Teichmu ̈ller theory, and the geometric Langlands correspondence. In this talk, I’ll describe what solutions of SL(n, C)-Hitchin’s equations “near the ends” of the moduli space look like, and the resulting compactification of the Hitchin moduli space. Wild Hitchin moduli spaces are an important ingredient in this construction. This construction generalizes Mazzeo-Swoboda-Weiss-Witt’s construction of SL(2, C)-solutions of Hitchin’s equations where the Higgs field is “simple.” Hitchin’s equations are a system of gauge theoretic equations on a Riemann surface that are of interest in many areas including representation theory, Teichmu ̈ller theory, and the geometric Langlands correspondence. In this talk, I’ll describe what solutions of SL(n, C)-Hitchin’s equations “near the ends” of the moduli space look like, and the resulting compactification of the Hitchin moduli space. Wild Hitchin moduli spaces are an important ...

14D20 ; 14D21 ; 14H70 ; 14H60 ; 14K25 ; 14P25 ; 53C07 ; 53D50 ; 53D30 ; 81T45 ; 81T15

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- x; 505 p.
ISBN 978-0-521-73471-4

London mathematical society lecture note series , 0359

Localisation : Collection 1er étage

géométrie algébrique # fibré vectoriel # théorie des modules # espace de modules

14-XX ; 16D10 ; 14D20 ; 14F05

... Lire [+]

Z