m

F Nous contacter

0

Documents  Bürgisser, Peter | enregistrements trouvés : 4

O
     

-A +A

P Q

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Computer Science

The performance of numerical algorithms, both regarding stability and complexity, can be understood in a unified way in terms of condition numbers. This requires to identify the appropriate geometric settings and to characterize condition in geometric ways.
A probabilistic analysis of numerical algorithms can be reduced to a corresponding analysis of condition numbers, which leads to fascinating problems of geometric probability and integral geometry. The most well known example is Smale's 17th problem, which asks to find a solution of a given system of n complex homogeneous polynomial equations in $n$ + 1 unknowns. This problem can be solved in average (and even smoothed) polynomial time.
In the course we will explain the concepts necessary to state and solve Smale's 17th problem. We also show how these ideas lead to new numerical algorithms for computing eigenpairs of matrices that provably run in average polynomial time. Making these algorithms more efficient or adapting them to structured settings are challenging and rewarding research problems. We intend to address some of these issues at the end of the course.
The performance of numerical algorithms, both regarding stability and complexity, can be understood in a unified way in terms of condition numbers. This requires to identify the appropriate geometric settings and to characterize condition in geometric ways.
A probabilistic analysis of numerical algorithms can be reduced to a corresponding analysis of condition numbers, which leads to fascinating problems of geometric probability and integral ...

65F35 ; 65K05 ; 68Q15 ; 68W01 ; 15A12 ; 65F10 ; 90C51 ; 65H10

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Computer Science

The performance of numerical algorithms, both regarding stability and complexity, can be understood in a unified way in terms of condition numbers. This requires to identify the appropriate geometric settings and to characterize condition in geometric ways.
A probabilistic analysis of numerical algorithms can be reduced to a corresponding analysis of condition numbers, which leads to fascinating problems of geometric probability and integral geometry. The most well known example is Smale's 17th problem, which asks to find a solution of a given system of n complex homogeneous polynomial equations in $n$ + 1 unknowns. This problem can be solved in average (and even smoothed) polynomial time.
In the course we will explain the concepts necessary to state and solve Smale's 17th problem. We also show how these ideas lead to new numerical algorithms for computing eigenpairs of matrices that provably run in average polynomial time. Making these algorithms more efficient or adapting them to structured settings are challenging and rewarding research problems. We intend to address some of these issues at the end of the course.
The performance of numerical algorithms, both regarding stability and complexity, can be understood in a unified way in terms of condition numbers. This requires to identify the appropriate geometric settings and to characterize condition in geometric ways.
A probabilistic analysis of numerical algorithms can be reduced to a corresponding analysis of condition numbers, which leads to fascinating problems of geometric probability and integral ...

65F35 ; 65K05 ; 68Q15 ; 68W01 ; 15A12 ; 65F10 ; 90C51 ; 65H10

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- xxxi; 554 p.
ISBN 978-3-642-38895-8

Grundlehren der mathematischen wissenschaften , 0349

Localisation : Collection 1er étage

analyse numérique # algorithme # nombre de conditionnement # algèbre linéaire # optimisation linéaire # résolution d'équation polynômiale # analyse d'erreur # système linéaire triangulaire # algorithme itératif pour résolution d'équation linéaire # méthode des ellipsoides # méthode des points intérieurs # analyse probabilistique de nombre conditionnel # méthode de Newton # 17ème problème de Smale

15A12 ; 52A22 ; 60D05 ; 65-02 ; 65F22 ; 65F35 ; 65G50 ; 65H10 ; 65H20 ; 90-02 ; 90C05 ; 90C31 ; 90C51 ; 90C60 ; 68Q25 ; 68W40

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 618 p.
ISBN 978-3-540-60582-9

Grundlehren der mathematischen wissenschaften , 0315

Localisation : Collection 1er étage;Réserve

algorithme # arbre # bord faiblement complexe # calcul # calcul algébrique # calcul symbolique # classe de complexité # combinatoire # complexité et performance des algorithmes numériques # modèle de calcul # polynôme # programme linéaire # théorie calculatoire # théorie de la complexité algébrique # théorie des matrices

05-XX ; 14A10 ; 14P10 ; 15-XX ; 16A46 ; 20Cxx ; 60C05 ; 65Fxx ; 65T10 ; 68Qxx

... Lire [+]

Z