m

F Nous contacter

0

Documents  Degond, Pierre | enregistrements trouvés : 7

O
     

-A +A

P Q

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research School;Partial Differential Equations;Mathematical Physics;Mathematics in Science and Technology

Lecture 1. Collective dynamics and self-organization in biological systems : challenges and some examples.

Lecture 2. The Vicsek model as a paradigm for self-organization : from particles to fluid via kinetic descriptions

Lecture 3. Phase transitions in the Vicsek model : mathematical analyses in the kinetic framework.

35L60 ; 82C22 ; 82B26 ; 82C26 ; 92D50

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- xiv, 251 p.
ISBN 978-3-540-79573-5

Lecture notes in mathematics , 1946

Localisation : Collection 1er étage

EDP en mécanique quantique # mécanique statistique # transport # hydrodynamique # opérateur Schrödinger # méthode des volumes finis # homogénéisation

81-99 ; 35Q40 ; 82C70 ; 76Y05 ; 35J10 ; 76M12 ; 76M50

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools

Emergence is a process by which coherent structures arise through interactions among elementary entities without being directly encoded in these interactions. In this course, we will address some of the key questions of emergence such as the deciphering of the hidden relation between individual behavior and emergent structures. We will start with presenting biologically relevant examples of microscopic individual-based models (IBM). Then, we will develop a systematic coarse-graining approach and derive corresponding coarse-grained models (CGM) using mathematical kinetic theory as the key methodology. We will highlight that novel kinetic theory concepts need to be developed as new mathematical problems arise with emergent systems such as the lack of conservations, the build-up of correlations, or the presence of phase transitions (or bifurcations). Our goal is to show how kinetic theory can be used to provide better understanding of emergence phenomena taking place in a wide variety of biological contexts. Emergence is a process by which coherent structures arise through interactions among elementary entities without being directly encoded in these interactions. In this course, we will address some of the key questions of emergence such as the deciphering of the hidden relation between individual behavior and emergent structures. We will start with presenting biologically relevant examples of microscopic individual-based models (IBM). Then, we ...

70G75 ; 76Zxx ; 74L15 ; 92C10

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research School;Partial Differential Equations;Mathematical Physics;Mathematics in Science and Technology

Lecture 1. Collective dynamics and self-organization in biological systems : challenges and some examples.

Lecture 2. The Vicsek model as a paradigm for self-organization : from particles to fluid via kinetic descriptions

Lecture 3. Phase transitions in the Vicsek model : mathematical analyses in the kinetic framework.

35L60 ; 82C22 ; 82B26 ; 82C26 ; 92D50

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research School;Partial Differential Equations;Mathematical Physics;Mathematics in Science and Technology

Lecture 1. Collective dynamics and self-organization in biological systems : challenges and some examples.

Lecture 2. The Vicsek model as a paradigm for self-organization : from particles to fluid via kinetic descriptions

Lecture 3. Phase transitions in the Vicsek model : mathematical analyses in the kinetic framework.

35L60 ; 82C22 ; 82B26 ; 82C26 ; 92D50

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools;Partial Differential Equations;Mathematics in Science and Technology

We propose a mean field kinetic model for systems of rational agents interacting in a game theoretical framework. This model is inspired from non-cooperative anonymous games with a continuum of players and Mean-Field Games. The large time behavior of the system is given by a macroscopic closure with a Nash equilibrium serving as the local thermodynamic equilibrium. Applications of the presented theory to social and economical models will be given. We propose a mean field kinetic model for systems of rational agents interacting in a game theoretical framework. This model is inspired from non-cooperative anonymous games with a continuum of players and Mean-Field Games. The large time behavior of the system is given by a macroscopic closure with a Nash equilibrium serving as the local thermodynamic equilibrium. Applications of the presented theory to social and economical models will be ...

91B80 ; 35Q82 ; 35Q91

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 115 p.

Localisation : Ouvrage RdC (DEGO)

développement asymptotique # équation aux derivées partielles # plasma

... Lire [+]

Z