m

F Nous contacter

0

Documents  Schlichenmaier, Martin | enregistrements trouvés : 9

O
     

-A +A

P Q

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Algebra;Algebraic and Complex Geometry;Mathematical Physics

We give a summary of a joint work with Giovanni Landi (Trieste University) on a non commutative generalization of Henri Cartan's theory of operations, algebraic connections and Weil algebra.

81R10 ; 81R60 ; 16T05

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- xii; 396 p.
ISBN 978-3-319-31755-7

Trends in mathematics

Localisation : Colloque 1er étage (BIAL)

géométrie différentielle # physique mathématique # théorie quantique

01-06 ; 01A70 ; 20N99 ; 58A50 ; 58Z05 ; 53-06 ; 53Z05 ; 81-06 ; 00B25

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- vii; 326 p.
ISBN 978-3-319-18211-7

Trends in mathematics

Localisation : Colloque 1er étage (BIAL)

histoire des mathématiques # modèle # analyse globale # variété # quantification géométrique # physique mathématique

01-06 ; 01A70 ; 20N99 ; 58A50 ; 58Z05 ; 58-06 ; 53-06 ; 17-06 ; 37-06 ; 14-06 ; 11-06 ; 34-06 ; 35-06 ; 33-06 ; 39-06 ; 70-06 ; 81-06

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 345 p.
ISBN 978-2-87971-253-6

Localisation : Colloque 1er étage (METZ)

géométrie de Poisson # structure de Poisson # équivalence # forme normale # système hamiltonien # application de moment # groupe de Lie # groupoïde de Poisson # groupoïde de Poisson dynamique # espace homogène et symétrique de Poisson # algébroïde de Lie

53D17 ; 58H05 ; 81S10

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Algebra

The Nakayama automorphism of an Artin-Schelter regular algebra $A$ controls the class of quantum groups that act on the algebra $A$. Several applications are given.

16T05 ; 81R50

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Algebra

Let $(H, R)$ be a finite dimensional quasitriangular Hopf algebra over a field $k$, and $_H\mathcal{M}$ the representation category of $H$. In this paper, we study the braided autoequivalences of the Drinfeld center $_H^H\mathcal{Y}\mathcal{D}$ trivializable on $_H\mathcal{M}$. We establish a group isomorphism between the group of those autoequivalences and the group of quantum commutative bi-Galois objects of the transmutation braided Hopf algebra $_RH$. We then apply this isomorphism to obtain a categorical interpretation of the exact sequence of the equivariant Brauer group $BM(k, H, R)$ established by Zhang. To this end, we have to develop the braided bi-Galois theory initiated by Schauenburg, which generalizes the Hopf bi-Galois theory over usual Hopf algebras to the one over braided Hopf algebras in a braided monoidal category. Let $(H, R)$ be a finite dimensional quasitriangular Hopf algebra over a field $k$, and $_H\mathcal{M}$ the representation category of $H$. In this paper, we study the braided autoequivalences of the Drinfeld center $_H^H\mathcal{Y}\mathcal{D}$ trivializable on $_H\mathcal{M}$. We establish a group isomorphism between the group of those autoequivalences and the group of quantum commutative bi-Galois objects of the transmutation braided Hopf ...

16T05 ; 16K50

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Algebra;Topology

Let $\mathfrak{h}$ be a finite dimensional real Leibniz algebra. Exactly as the linear dual space of a Lie algebra is a Poisson manifold with respect to the Kostant-Kirillov-Souriau (KKS) bracket, $\mathfrak{h}^*$ can be viewed as a generalized Poisson manifold. The corresponding bracket is roughly speaking the evaluation of the KKS bracket at $0$ in one variable. This (perhaps strange looking) bracket comes up naturally when quantizing $\mathfrak{h}^*$ in an analoguous way as one quantizes the dual of a Lie algebra. Namely, the product $X \vartriangleleft Y = exp(ad_X)(Y)$ can be lifted to cotangent level and gives than a symplectic micromorphism which can be quantized by Fourier integral operators. This is joint work with Benoit Dherin (2013). More recently, we developed with Charles Alexandre, Martin Bordemann and Salim Rivire a purely algebraic framework which gives the same star-product. Let $\mathfrak{h}$ be a finite dimensional real Leibniz algebra. Exactly as the linear dual space of a Lie algebra is a Poisson manifold with respect to the Kostant-Kirillov-Souriau (KKS) bracket, $\mathfrak{h}^*$ can be viewed as a generalized Poisson manifold. The corresponding bracket is roughly speaking the evaluation of the KKS bracket at $0$ in one variable. This (perhaps strange looking) bracket comes up naturally when quantizing ...

53D55 ; 22Exx ; 81R60 ; 17A32

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Algebra;Algebraic and Complex Geometry;Mathematical Physics

We introduce the concept of N-differential graded algebras ($N$-dga), and study the moduli space of deformations of the differential of a $N$-dga. We prove that it is controlled by what we call the $N$-Maurer-Cartan equation. We provide geometric examples such as the algebra of differential forms of depth $N$ on an affine manifold, and $N$-flat covariant derivatives. We also consider deformations of the differential of a $q$-differential graded algebra. We prove that it is controlled by a generalized Maurer-Cartan equation. We find explicit formulae for the coefficients involved in that equation. Deformations of the $3$-differential of $3$-differential graded algebras are controlled by the $(3,N)$ Maurer-Cartan equation. We find explicit formulae for the coefficients appearing in that equation, introduce new geometric examples of $N$-differential graded algebras, and use these results to study $N$-Lie algebroids. We study higher depth algebras, and work towards the construction of the concept of $A^N_ \infty$-algebras. We introduce the concept of N-differential graded algebras ($N$-dga), and study the moduli space of deformations of the differential of a $N$-dga. We prove that it is controlled by what we call the $N$-Maurer-Cartan equation. We provide geometric examples such as the algebra of differential forms of depth $N$ on an affine manifold, and $N$-flat covariant derivatives. We also consider deformations of the differential of a $q$-differential graded ...

16E45 ; 53B50 ; 81R10 ; 16S80 ; 58B32

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- xv; 360 p.
ISBN 978-3-11-026517-0

Studies in mathematics , 0053

Localisation : Ouvrage RdC (SCHL)

algèbre de Lie de dimension infinie # algèbre de Krichever-Novikov

17B65 ; 17B66 ; 17B67 ; 17B68 ; 17B81 ; 14H10 ; 14H15 ; 14H55 ; 17B56 ; 30F30 ; 32G15 ; 81R10 ; 81T40 ; 17-02

... Lire [+]

Z