m

Documents  Rudnick, Zeév | enregistrements trouvés : 2

O
     

-A +A

P Q

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 345 p.
ISBN 978-1-4020-5403-7

NATO science series II : Mathematics, physics and chemistry , 0237

Localisation : Colloque 1er étage (MONT)

théorie des nombres # cryptographie # distribution # point de torsion # racine de polynôme # equidistribution # point rationel # problème de Linnik # théorème de Ratner # forme automorphe # application quantique

11-06

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Number Theory

Fermat showed that every prime $p = 1$ mod $4$ is a sum of two squares: $p = a^2 + b^2$, and hence such a prime gives rise to an angle whose tangent is the ratio $b/a$. Hecke showed, in 1919, that these angles are uniformly distributed, and uniform distribution in somewhat short arcs was given in by Kubilius in 1950 and refined since then. I will discuss the statistics of these angles on fine scales and present a conjecture, motivated by a random matrix model and by function field considerations. Fermat showed that every prime $p = 1$ mod $4$ is a sum of two squares: $p = a^2 + b^2$, and hence such a prime gives rise to an angle whose tangent is the ratio $b/a$. Hecke showed, in 1919, that these angles are uniformly distributed, and uniform distribution in somewhat short arcs was given in by Kubilius in 1950 and refined since then. I will discuss the statistics of these angles on fine scales and present a conjecture, motivated by a ...

11M26 ; 11M06 ; 11F66 ; 11T55 ; 11R44 ; 11M50

... Lire [+]

Z