m

F Nous contacter

0

Documents  Khovanskii, Askold | enregistrements trouvés : 3

O
     

-A +A

P Q

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 555 p.
ISBN 978-0-8218-0945-7

Fields institute communications , 0024

Localisation : Collection 1er étage

Arnold # analyse sur les variétés # géométrie algébrique # mécanique des fluides # mécanique des particules et des systèmes # propagation d"onde # singularité # stabilité d"Arnold # système dynamique # variété symplectique # équation différentielle ordinaire

01A65 ; 14-06 ; 34-06 ; 57-06 ; 58-06 ; 70-06 ; 76-06

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Algebraic and Complex Geometry

Let $X$ be an algebraic subvariety in $(\mathbb{C}^*)^n$. According to the good compactifification theorem there is a complete toric variety $M \supset (\mathbb{C}^*)^n$ such that the closure of $X$ in $M$ does not intersect orbits in $M$ of codimension bigger than dim$_\mathbb{C} X$. All proofs of this theorem I met in literature are rather involved.
The ring of conditions of $(\mathbb{C}^*)^n$ was introduced by De Concini and Procesi in 1980-th. It is a version of intersection theory for algebraic cycles in $(\mathbb{C}^*)^n$. Its construction is based on the good compactification theorem. Recently two nice geometric descriptions of this ring were found. Tropical geometry provides the first description. The second one can be formulated in terms of volume function on the cone of convex polyhedra with integral vertices in $\mathbb{R}^n$. These descriptions are unified by the theory of toric varieties.
I am going to discuss these descriptions of the ring of conditions and to present a new version of the good compactification theorem. This version is stronger that the usual one and its proof is elementary.
Let $X$ be an algebraic subvariety in $(\mathbb{C}^*)^n$. According to the good compactifification theorem there is a complete toric variety $M \supset (\mathbb{C}^*)^n$ such that the closure of $X$ in $M$ does not intersect orbits in $M$ of codimension bigger than dim$_\mathbb{C} X$. All proofs of this theorem I met in literature are rather involved.
The ring of conditions of $(\mathbb{C}^*)^n$ was introduced by De Concini and Procesi in ...

14M25 ; 14T05 ; 14M17

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- xviii; 307 p.
ISBN 978-3-642-38870-5

Springer monographs in mathematics

Localisation : Ouvrage RdC (KHOV)

théorie de Galois # fonctions d'une variable complexe # topologie # théorie des groupes # groupe topologique # théorie des corps

55-02 ; 34M15 ; 32Q55 ; 12F10 ; 30F10 ; 12-02 ; 12H05

... Lire [+]

Z