m
• E

F Nous contacter

0

# Documents  Laurent, Monique | enregistrements trouvés : 3

O

P Q

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

## The moment-LP and moment-SOS hierarchies Lasserre, Jean Bernard | CIRM H

Post-edited

Research talks;Control Theory and Optimization

We review basic properties of the moment-LP and moment-SOS hierarchies for polynomial optimization and compare them. We also illustrate how to use such a methodology in two applications outside optimization. Namely :
- for approximating (as claosely as desired in a strong sens) set defined with quantifiers of the form
$R_1 =\{ x\in B : f(x,y)\leq 0$ for all $y$ such that $(x,y) \in K \}$.
$D_1 =\{ x\in B : f(x,y)\leq 0$ for some $y$ such that $(x,y) \in K \}$.
by a hierarchy of inner sublevel set approximations
$\Theta_k = \left \{ x\in B : J_k(x)\leq 0 \right \}\subset R_f$.
or outer sublevel set approximations
$\Theta_k = \left \{ x\in B : J_k(x)\leq 0 \right \}\supset D_f$.
for some polynomiales $(J_k)$ of increasing degree :
- for computing convex polynomial underestimators of a given polynomial $f$ on a box $B \subset R^n$.
We review basic properties of the moment-LP and moment-SOS hierarchies for polynomial optimization and compare them. We also illustrate how to use such a methodology in two applications outside optimization. Namely :
- for approximating (as claosely as desired in a strong sens) set defined with quantifiers of the form
$R_1 =\{ x\in B : f(x,y)\leq 0$ for all $y$ such that $(x,y) \in K \}$.
$D_1 =\{ x\in B : f(x,y)\leq 0$ for ...

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

## Combinatorial and algorithmic properties of Robinsonian matrices Laurent, Monique | CIRM H

Multi angle

Research talks;Combinatorics;Computer Science

Robinsonian matrices are structured matrices that have been introduced in the 1950's by the archeologist W.S. Robinson for chronological dating of Egyptian graves. A symmetric matrix is said to be Robinsonian if its rows and columns can be simultaneously reordered in such a way that the entries are monotone nondecreasing in the rows and columns when moving toward the main diagonal. Robinsonian matrices can be seen as a matrix analog of unit interval graphs, which are precisely the graphs having a Robinsonian adjacency matrix. We will discuss several aspects of Robinsonian matrices: links to unit interval graphs; new efficient combinatorial recognition algorithm based on Similarity-First Search, a natural extension to weighted graphs of Lex-BFS; structural characterization by minimal forbidden substructures; and application to tractable instances of the Quadratic Assignment Problem. Robinsonian matrices are structured matrices that have been introduced in the 1950's by the archeologist W.S. Robinson for chronological dating of Egyptian graves. A symmetric matrix is said to be Robinsonian if its rows and columns can be simultaneously reordered in such a way that the entries are monotone nondecreasing in the rows and columns when moving toward the main diagonal. Robinsonian matrices can be seen as a matrix analog of unit ...

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

## Geometry of cuts and metrics Deza, Michel Marie ; Laurent, Monique | Springer 1997

Ouvrage

- 587 p.
ISBN 978-3-540-61611-5

Algorithms and combinatorics , 0015

Localisation : Ouvrage RdC (DEZA)

combinatoire # géométrie convexe # géométrie des nombres # géométrie discrète # inégalité # plongement # polytope # polyèdre # probabilité # programmation mathématique # théorie des graphs # topologie différentielle # variété topologique

#### Filtrer

##### Codes MSC

Ressources Electroniques (Depuis le CIRM)

Books & Print journals

Recherche avancée

0
Z