m

F Nous contacter

0

Documents  Osin, Denis V. | enregistrements trouvés : 2

O
     

-A +A

P Q

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Algebra;Geometry

A subgroup $H$ of an acylindrically hyperbolic groups $G$ is called geometrically dense if for every non-elementary acylindrical action of $G$ on a hyperbolic space, the limit sets of $G$ and $H$ coincide. We prove that for every ergodic measure preserving action of a countable acylindrically hyperbolic group $G$ on a Borel probability space, either the stabilizer of almost every point is geometrically dense in $G$, or the action is essentially almost free (i.e., the stabilizers are finite). Various corollaries and generalizations of this result will be discussed. A subgroup $H$ of an acylindrically hyperbolic groups $G$ is called geometrically dense if for every non-elementary acylindrical action of $G$ on a hyperbolic space, the limit sets of $G$ and $H$ coincide. We prove that for every ergodic measure preserving action of a countable acylindrically hyperbolic group $G$ on a Borel probability space, either the stabilizer of almost every point is geometrically dense in $G$, or the action is essentially ...

20F67 ; 20F65

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 100 p.
ISBN 978-0-8218-3821-1

Memoirs of the american mathematical society , 0843

Localisation : Collection 1er étage

théorie des groupes géométriques # groupe hyperbolique # espace hyperbolique # inégalité isopérimétrique # fonction de Dehn # problème algorithmique # sous-groupe quasi-convexe

20F65 ; 20F05 ; 20F06 ; 20F10 ; 20F67 ; 20F69

... Lire [+]

Z