m

F Nous contacter

0

Documents  Peyré, Gabriel | enregistrements trouvés : 8

O
     

-A +A

P Q

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Analysis and its Applications;Computer Science

The alternating direction method of multipliers (ADMM) is an optimization tool of choice for several imaging inverse problems, namely due its flexibility, modularity, and efficiency. In this talk, I will begin by reviewing our earlier work on using ADMM to deal with classical problems such as deconvolution, inpainting, compressive imaging, and how we have exploited its flexibility to deal with different noise models, including Gaussian, Poissonian, and multiplicative, and with several types of regularizers (TV, frame-based analysis, synthesis, or combinations thereof). I will then describe more recent work on using ADMM for other problems, namely blind deconvolution and image segmentation, as well as very recent work where ADMM is used with plug-in learned denoisers to achieve state-of-the-art results in class-specific image deconvolution. Finally, on the theoretical front, I will describe very recent work on tackling the infamous problem of how to adjust the penalty parameter of ADMM. The alternating direction method of multipliers (ADMM) is an optimization tool of choice for several imaging inverse problems, namely due its flexibility, modularity, and efficiency. In this talk, I will begin by reviewing our earlier work on using ADMM to deal with classical problems such as deconvolution, inpainting, compressive imaging, and how we have exploited its flexibility to deal with different noise models, including Gaussian, ...

65J22 ; 65K10 ; 65T60 ; 94A08

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Analysis and its Applications;Mathematics in Science and Technology

In this talk, we investigate in a unified way the structural properties of a large class of convex regularizers for linear inverse problems. These penalty functionals are crucial to force the regularized solution to conform to some notion of simplicity/low complexity. Classical priors of this kind includes sparsity, piecewise regularity and low-rank. These are natural assumptions for many applications, ranging from medical imaging to machine learning.
imaging - image processing - sparsity - convex optimization - inverse problem - super-resolution
In this talk, we investigate in a unified way the structural properties of a large class of convex regularizers for linear inverse problems. These penalty functionals are crucial to force the regularized solution to conform to some notion of simplicity/low complexity. Classical priors of this kind includes sparsity, piecewise regularity and low-rank. These are natural assumptions for many applications, ranging from medical imaging to machine ...

62H35 ; 65D18 ; 94A08 ; 68U10 ; 90C31 ; 80M50 ; 47N10

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Special events;Hommage à Claude Shannon;Computer Science;Mathematics Education and Popularization of Mathematics;History of Mathematics

A l'occasion du centenaire de la naissance de Claude Shannon, la SMF, la SMAI et le CIRM organisent, à l'issue de la conférence SIGMA, une après-midi d'exposés grand public autour de l'oeuvre scientifique de Claude Shannon, de la théorie de l'information et de ses applications.

94-XX ; 68Qxx ; 00A06

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Special events;Hommage à Claude Shannon;Computer Science;Mathematics Education and Popularization of Mathematics;History of Mathematics

A l'occasion du centenaire de la naissance de Claude Shannon, la SMF, la SMAI et le CIRM organisent, à l'issue de la conférence SIGMA, une après-midi d'exposés grand public autour de l'oeuvre scientifique de Claude Shannon, de la théorie de l'information et de ses applications.

94-XX ; 68Qxx ; 00A06

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Special events;Hommage à Claude Shannon;Computer Science;Mathematics Education and Popularization of Mathematics;History of Mathematics

A l'occasion du centenaire de la naissance de Claude Shannon, la SMF, la SMAI et le CIRM organisent, à l'issue de la conférence SIGMA, une après-midi d'exposés grand public autour de l'oeuvre scientifique de Claude Shannon, de la théorie de l'information et de ses applications.

94-XX ; 68Qxx ; 00A06

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Special events;Hommage à Claude Shannon;Computer Science;Mathematics Education and Popularization of Mathematics;History of Mathematics

A l'occasion du centenaire de la naissance de Claude Shannon, la SMF, la SMAI et le CIRM organisent, à l'issue de la conférence SIGMA, une après-midi d'exposés grand public autour de l'oeuvre scientifique de Claude Shannon, de la théorie de l'information et de ses applications.

94-XX ; 00A06 ; 68Qxx

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Analysis and its Applications;Computer Science;Geometry

Large image and 3D model repositories of everyday objects are now ubiquitous and are increasingly being used in computer graphics and computer vision, both for analysis and synthesis. However, images of objects in the real world have a richness of appearance that these repositories do not capture, largely because most existing 3D models are untextured. In this work we develop an automated pipeline capable of linking the two collections, and transporting texture information from images of real objects to 3D models of similar objects. This is a challenging problem, as an object's texture as seen in a photograph is distorted by many factors, including pose, geometry, and illumination. These geometric and photometric distortions must be undone in order to transfer the pure underlying texture to a new object ? the 3D model. Instead of using problematic dense correspondences, we factorize the problem into the reconstruction of a set of base textures (materials) and an illumination model for the object in the image. By exploiting the geometry of the similar 3D model, we reconstruct certain reliable texture regions and correct for the illumination, from which a full texture map can be recovered and applied to the model. Our method allows for large-scale unsupervised production of richly textured 3D models directly from image data, providing high quality virtual objects for 3D scene design or photo editing applications, as well as a wealth of data for training machine learning algorithms for various inference tasks in graphics and vision. For more details, please visit: geometry.cs.ucl.ac.uk. Large image and 3D model repositories of everyday objects are now ubiquitous and are increasingly being used in computer graphics and computer vision, both for analysis and synthesis. However, images of objects in the real world have a richness of appearance that these repositories do not capture, largely because most existing 3D models are untextured. In this work we develop an automated pipeline capable of linking the two collections, and ...

68U10 ; 65D18

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 324 p.
ISBN 978-2-7298-1867-8

Mathématiques à l'université

Localisation : Enseignement RdC (PEYR)

transformation de Fourier discrète # groupe fini # algèbre discrète # dualité # corps fini # représentation de groupe # traitement du signal # représentation linéaire # enseignement

65T50

... Lire [+]

Z