m

Documents  03D28 | enregistrements trouvés : 4

O
     

-A +A

P Q

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 320 p.
ISBN 978-0-8218-1922-7

Contemporary mathematics , 0257

Localisation : Collection 1er étage

application de la calculabilité # arithmétique # arithmétique d"ordre élevé # degré # degré de Turin # ensemble récursivement énumérable # fonction calculable # logique # modèle nonstandard # numération # récurrence # réductibilité # théorie de récurrence # théorie des modèles # théorie descriptive des ensembles

03C57 ; 03D25 ; 03D28 ; 03D30 ; 03D45 ; 03D80 ; 03E15 ; 03E35 ; 03F35 ; 03H15

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- ix; 174 p.
ISBN 978-981-4699-94-5

Lecture notes series, Institute for mathematical sciences, National university of Singapore , 0029

Localisation : Colloque 1er étage (SING)

théorie des modèles # non-résolubilité # logique mathématique # forcing

03-06 ; 03E40 ; 03C20 ; 03D28 ; 00B25

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Barmpalias and Lewis-Pye recently proved that if $\alpha$ and $\beta$ are (Martin-Löf) random left-c.e. reals with left-c.e. approximations $\{\alpha_s \}_{s \in\ omega}$ and $\{\beta_s \}_{s \in\ omega}$, then
\[
\begin{equation}
\frac{\partial\alpha}{\partial\beta} = \lim_{s\to\infty} \frac{\alpha-\alpha_s}{\beta-\beta_s}.
\end{equation}
\]
converges and is independent of the choice of approximations. Furthermore, they showed that $\partial\alpha/\partial\beta = 1$ if and only if $\alpha-\beta$ is nonrandom; $\partial\alpha/\partial\beta>1$ if and only if $\alpha-\beta$ is a random left-c.e. real; and $\partial\alpha/\partial\beta<1$ if and only if $\alpha-\beta$ is a random right-c.e. real.

We extend their results to the d.c.e. reals, which clarifies what is happening. The extension is straightforward. Fix a random left-c.e. real $\Omega$ with approximation $\{\Omega_s\}_{s\in\omega}$. If $\alpha$ is a d.c.e. real with d.c.e. approximation $\{\alpha_s\}_{s\in\omega}$, let
\[
\partial\alpha = \frac{\partial\alpha}{\partial\Omega} = \lim_{s\to\infty} \frac{\alpha-\alpha_s}{\Omega-\Omega_s}.
\]
As above, the limit exists and is independent of the choice of approximations. Now $\partial\alpha=0$ if and only if $\alpha$ is nonrandom; $\partial\alpha>0$ if and only if $\alpha$ is a random left-c.e. real; and $\partial\alpha<0$ if and only if $\alpha$ is a random right-c.e. real.

As we have telegraphed by our choice of notation, $\partial$ is a derivation on the field of d.c.e. reals. In other words, $\partial$ preserves addition and satisfies the Leibniz law:
\[
\partial(\alpha\beta) = \alpha\,\partial\beta + \beta\,\partial\alpha.
\]
(However, $\partial$ maps outside of the d.c.e. reals, so it does not make them a differential field.) We will see how the properties of $\partial$ encapsulate much of what we know about randomness in the left-c.e. and d.c.e. reals. We also show that if $f\colon\mathbb{R}\rightarrow\mathbb{R}$ is a computable function that is differentiable at $\alpha$, then $\partial f(\alpha) = f'(\alpha)\,\partial\alpha$. This allows us to apply basic identities from calculus, so for example, $\partial\alpha^n = n\alpha^{n-1}\,\partial\alpha$ and $\partial e^\alpha = e^\alpha\,\partial\alpha$. Since $\partial\Omega=1$, we have $\partial e^\Omega = e^\Omega$.

Given a derivation on a field, the elements that it maps to zero also form a field: the $ \textit {field of constants}$. In our case, these are the nonrandom d.c.e. reals. We show that, in fact, the nonrandom d.c.e. reals form a $ \textit {real closed field}$. Note that it was not even known that the nonrandom d.c.e. reals are closed under addition, and indeed, it is easy to prove the convergence of [1] from this fact. In contrast, it has long been known that the nonrandom left-c.e. reals are closed under addition (Demuth [2] and Downey, Hirschfeldt, and Nies [3]). While also nontrivial, this fact seems to be easier to prove. Towards understanding this difference, we show that the real closure of the nonrandom left-c.e. reals is strictly smaller than the field of nonrandom d.c.e. reals. In particular, there are nonrandom d.c.e. reals that cannot be written as the difference of nonrandom left-c.e. reals; despite being nonrandom, they carry some kind of intrinsic randomness.
Barmpalias and Lewis-Pye recently proved that if $\alpha$ and $\beta$ are (Martin-Löf) random left-c.e. reals with left-c.e. approximations $\{\alpha_s \}_{s \in\ omega}$ and $\{\beta_s \}_{s \in\ omega}$, then
\[
\begin{equation}
\frac{\partial\alpha}{\partial\beta} = \lim_{s\to\infty} \frac{\alpha-\alpha_s}{\beta-\beta_s}.
\end{equation}
\]
converges and is independent of the choice of approximations. Furthermore, they showed that ...

03D28 ; 03D80 ; 03F60 ; 68Q30

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- vii; 90 p.
ISBN 978-1-4704-4162-3

Memoirs of the American Mathematical Society , 1284

Localisation : Collection 1er étage

ensemble numérable # degré de Turing # faible degré de la table de vérité # degré minimal

03D25 ; 03D28 ; 03D30

... Lire [+]

Z