m

F Nous contacter

0

Documents  05B35 | enregistrements trouvés : 50

O

-A +A

P Q

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- VII-327 p.
ISBN 978-0-521-74173-6

London mathematical society lecture note series , 0365

Localisation : Collection 1er étage

combinatoires # théorie des graphes

05-06 ; 05Cxx ; 05B35 ; 68M10

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.


ISBN 978-3-540-05545-7

Lecture notes in mathematics , 0211

Localisation : Collection 1er étage

dualité en théorie des matroïdes # espace d'indépendance transversal # matroïde non-séparable # matroïde représentable en espace vectoriel sur corps # plan de bloc # problème extrémal # représentabilité et transversalité de matroïde # représentation sur un corps de matroïde # roue et mouvement giratoire # théorie transversale généralisée

05B35

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 418 p.
ISBN 978-0-8218-0508-4

Contemporary mathematics , 0197

Localisation : Collection 1er étage

K-mineur # U-mineur # application électrique # approximation aléatoire du nombre des bases # connexité pour matroïde # géométrie appliquée discrète # matroïde Coxeter de Gelfand et autres # matroïde binaire # matroïde monotactique # matroïde représentable # paire de matroïdes orientés # polynôme caractéristique grilloïde # rigidité squelettique de p.l.-sphère # séparation matroïde # théorie # théorie des matroïdes # théorème min-max

05B35 ; 52C25

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 251 p.
ISBN 978-0-8218-3092-5

Proceedings of the Steklov institute of mathematics , 0165

Localisation : Collection 1er étage

01A70 ; 05B35 ; 10C15 ; 12-02 ; 14-02

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.


ISBN 978-0-444-87580-8

Colloquia mathematica societatis janos bolyai , 0040

Localisation : Colloque 1er étage (SZEG)

05B35

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 299 p.
ISBN 978-3-540-11176-4

Lecture notes in mathematics , 0901

Localisation : Collection 1er étage

05B35 ; 14H99 ; 17B65 ; 30F35 ; 53A15

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks

In general the computation of the weight enumerator of a code is hard and even harder so for the coset leader weight enumerator. Generalized Reed Solomon codes are MDS, so their weight enumerators are known and its formulas depend only on the length and the dimension of the code. The coset leader weight enumerator of an MDS code depends on the geometry of the associated projective system of points. We consider the coset leader weight enumerator of $F_{q}$-ary Generalized Reed Solomon codes of length q + 1 of small dimensions, so its associated projective system is a normal rational curve. For instance in case of the $\left [ q+1,3,q-1 \right ]_{q}$ code where the associated projective system of points consists of the q + 1 points of a plane conic, the answer depends whether the characteristic is odd or even. If the associated projective system of points of a $\left [ q+1,4,q-2 \right ]_{q}$ code consists of the q + 1 points of a twisted cubic, the answer depends on the value of the characteristic modulo 6. In general the computation of the weight enumerator of a code is hard and even harder so for the coset leader weight enumerator. Generalized Reed Solomon codes are MDS, so their weight enumerators are known and its formulas depend only on the length and the dimension of the code. The coset leader weight enumerator of an MDS code depends on the geometry of the associated projective system of points. We consider the coset leader weight enumerator ...

94B05 ; 94B27 ; 14H50 ; 05B35

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks

Crapo's beta invariant was defined by Henry Crapo in the 1960s. For a matroid $M$, the invariant $\beta(M)$ is the non-negative integer that is the coefficient of the $x$ term of the Tutte polynomial. Crapo proved that $\beta(M)>0$ if and only if $M$ is connected and $M$ is not a loop, and Brylawski proved that $M$ is the matroid of a series-parallel network if and only if $M$ is a co-loop or $\beta(M)=1.$ In this talk, we present several generalizations of the beta invariant to combinatorial structures that are not matroids. We concentrate on posets, chordal graphs, and finite subsets of Euclidean space. In each case, our definition of $\beta$ measures the number of "interior'' elements. Crapo's beta invariant was defined by Henry Crapo in the 1960s. For a matroid $M$, the invariant $\beta(M)$ is the non-negative integer that is the coefficient of the $x$ term of the Tutte polynomial. Crapo proved that $\beta(M)>0$ if and only if $M$ is connected and $M$ is not a loop, and Brylawski proved that $M$ is the matroid of a series-parallel network if and only if $M$ is a co-loop or $\beta(M)=1.$ In this talk, we present several ...

05B35

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks

Delta-matroids generalize matroids. In a delta-matroid, the counterparts of bases, which are called feasible sets, can have different sizes, but they satisfy a similar exchange property in which symmetric differences replace set differences. One way to get a delta-matroid is to take a matroid L, a quotient Q of L, and all of the Higgs lifts of Q toward L; the union of the sets of bases of these Higgs lifts is the collection of feasible sets of a delta-matroid, which we call a full Higgs lift delta-matroid.

We give an excluded-minor characterization of full Higgs lift delta-matroids within the class of all delta-matroids. We introduce a class of full Higgs lift delta-matroids that arise from lattice paths and that generalize lattice path matroids. It follows from results of Bouchet that all delta-matroids can be obtained from full Higgs lift delta-matroids by removing certain feasible sets; to address which feasible sets can be removed, we give an excluded-minor characterization of delta-matroids within the more general structure of set systems. This result in turn yields excluded-minor characterizations of a number of related classes of delta-matroids.
(This is joint work with Carolyn Chun and Steve Noble.)
Delta-matroids generalize matroids. In a delta-matroid, the counterparts of bases, which are called feasible sets, can have different sizes, but they satisfy a similar exchange property in which symmetric differences replace set differences. One way to get a delta-matroid is to take a matroid L, a quotient Q of L, and all of the Higgs lifts of Q toward L; the union of the sets of bases of these Higgs lifts is the collection of feasible sets of a ...

05B35

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks

A cube is a matroid over $C^n=\{-1,+1\}^n$ that contains as circuits the usual rectangles of the real affine cube packed in such a way that the usual facets and skew-facets are hyperplanes of the matroid.
How many cubes are orientable? So far, only one: the oriented real affine cube. We review the results obtained so far concerning this question. They follow two directions:
1) Identification of general obstructions to orientability in this class. (da Silva, EJC 30 (8), 2009, 1825-1832).
2) (work in collaboration with E. Gioan) Identification of algebraic and geometric properties of recursive families of non-negative integer vectors defining hyperplanes of the real affine cube and the analysis of this question and of las Vergnas cube conjecture in small dimensions.
A cube is a matroid over $C^n=\{-1,+1\}^n$ that contains as circuits the usual rectangles of the real affine cube packed in such a way that the usual facets and skew-facets are hyperplanes of the matroid.
How many cubes are orientable? So far, only one: the oriented real affine cube. We review the results obtained so far concerning this question. They follow two directions:
1) Identification of general obstructions to orientability in this ...

05B35 ; 52A37 ; 52C40

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks

The classical Tverberg's theorem says that a set with sufficiently many points in $R^d$ can always be partitioned into m parts so that the (m - 1)-simplex is the (nerve) intersection pattern of the convex hulls of the parts. Our main results demonstrate that Tverberg's theorem is but a special case of a much more general situation. Given sufficiently many points, any tree or cycle, can also be induced by at least one partition of the point set. The proofs require a deep investigation of oriented matroids and order types.
(Joint work with Deborah Oliveros, Tommy Hogan, Dominic Yang (supported by NSF).)
The classical Tverberg's theorem says that a set with sufficiently many points in $R^d$ can always be partitioned into m parts so that the (m - 1)-simplex is the (nerve) intersection pattern of the convex hulls of the parts. Our main results demonstrate that Tverberg's theorem is but a special case of a much more general situation. Given sufficiently many points, any tree or cycle, can also be induced by at least one partition of the point set. ...

05B35 ; 52C40

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks

Some problems connected with the concatenation operation will be described.

05B35 ; 52C40

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks

There are several clutters (antichains of sets) that can be associated with a matroid, as the clutter of circuits, the clutter of bases or the clutter of hyperplanes. We study the following question: given an arbitrary clutter $\Lambda$, which are the matroidal clutters that are closest to $\Lambda$? To answer it we first decide on the meaning of closest, and select one of the different matroidal clutters.

We show that for almost all reasonable choices above there is a finite set of matroidal clutters that approximate $\Lambda$ and, moreover, that $\Lambda$ can be recovered from them by a suitable operation. We also link our work to results in lattice theory, and give algorithmic procedures to compute the approximations. We are also interested in the same questions when we further require that both the original clutter and the matroidal approximations have the same ground set. In this situation, it is often the case that $\Lambda$ cannot be recovered by the approximating matroidal clutters (if they exist), but we can characterize when it does.

Although our initial interest was in matroids, our framework is general and applies in any situation when one wishes to decompose the clutter $\Lambda$ with members of a favourite family of clutters, not necessarily a matroidal one.
(Joint work with Jaume Martí-Farré and José Luis Ruiz.)
There are several clutters (antichains of sets) that can be associated with a matroid, as the clutter of circuits, the clutter of bases or the clutter of hyperplanes. We study the following question: given an arbitrary clutter $\Lambda$, which are the matroidal clutters that are closest to $\Lambda$? To answer it we first decide on the meaning of closest, and select one of the different matroidal clutters.

We show that for almost all reasonable ...

05B35

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks

Let $(A,B)$ be a $3$-separation in a matroid $M$. If $M$ is representable, then, in the underlying projective space, there is a line where the subspaces spanned by $A$ and $B$ meet, and $M$ can be extended by adding elements from this line. In general, Geelen, Gerards, and Whittle proved that $M$ can be extended by an independent set $\{p,q\}$ such that $\{p,q\}$ is in the closure of each of $A$ and $B$. In this extension, each of $p$ and $q$ is freely placed on the line $L$ spanned by $\{p,q\}$. This talk will discuss a result that gives necessary and sufficient conditions under which a fixed element can be placed on $L$. Let $(A,B)$ be a $3$-separation in a matroid $M$. If $M$ is representable, then, in the underlying projective space, there is a line where the subspaces spanned by $A$ and $B$ meet, and $M$ can be extended by adding elements from this line. In general, Geelen, Gerards, and Whittle proved that $M$ can be extended by an independent set $\{p,q\}$ such that $\{p,q\}$ is in the closure of each of $A$ and $B$. In this extension, each of $p$ and $q$ is ...

05B35

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- xxi; 1927 p.
ISBN 978-1-4987-1139-5

Discrete mathematics and its applications

Localisation : Ouvrage RdC (HAND)

géométrie discrète # géométrie computationnelle # traitement des données

52-02 ; 51Exx ; 65D18 ; 68U05 ; 05B35 ; 11-02 ; 05-02 ; 68-02

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- xii; 363 p.
ISBN 978-0-8218-5198-2

Graduate studies in mathematics , 0161

Localisation : Collection 1er étage;Réserve

géométrie tropicale

14T05 ; 05B35 ; 12J25 ; 13P10 ; 14M25 ; 52B20

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- xx; 384 p.
ISBN 978-0-387-78962-0

Universitext

Localisation : Ouvrage RdC (DECO)

polytôpes # matroïdes # spline # fonction de partition # arrangement hyperplan

14-02 ; 05B35 ; 11P21 ; 14A05 ; 14M25 ; 14N20 ; 41A15 ; 52B20 ; 52B40 ; 65D07

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- ix; 96 p.
ISBN 978-0-8218-5315-3

CBMS regional conference series in mathematics , 0115

Localisation : Collection 1er étage

théorie des graphes # matrices # analyse combinatoire # algèbre linéaire

05C50 ; 05B35 ; 05C20 ; 15A15 ; 15A18

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- xv; 393 p.
ISBN 978-0-521-14568-8

Localisation : Ouvrage RdC (GORD)

05-01 ; 05B35 ; 52B40

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- vii; 78 p.
ISBN 978-0-8218-6910-9

Memoirs of the american mathematical society , 1024

Localisation : Collection 1er étage

algèbre de Artin # ensemble partiellement ordonné # algèbre commutative # algèbre de Gorenstein # énumération # g-élément # propriété de Lefschetz # sysème inverse de Macaulay

13D40 ; 06A07 ; 13E10 ; 13H10 ; 05A16 ; 05B35 ; 14M05 ; 13F20

... Lire [+]

Z