m

F Nous contacter

0

Documents  05C80 | enregistrements trouvés : 52

O

-A +A

P Q

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Combinatorics

Graphons and graphexes are limits of graphs which allow us to model and estimate properties of large-scale networks. In this pair of talks, we review the theory of dense graph limits, and give two alterative theories for limits of sparse graphs - one leading to unbounded graphons over probability spaces, and the other leading to bounded graphons (and graphexes) over sigma-finite measure spaces. Talk I, given by Jennifer, will review the general theory, highlight the unbounded graphons, and show how they can be used to consistently estimate properties of large sparse networks. This talk will also give an application of these sparse graphons to collaborative filtering on sparse bipartite networks. Talk II, given by Christian, will recast limits of dense graphs in terms of exchangeability and the Aldous Hoover Theorem, and generalize this to obtain sparse graphons and graphexes as limits of subgraph samples from sparse graph sequences. This will provide a dual view of sparse graph limits as processes and random measures, an approach which allows a generalization of many of the well-known results and techniques for dense graph sequences. Graphons and graphexes are limits of graphs which allow us to model and estimate properties of large-scale networks. In this pair of talks, we review the theory of dense graph limits, and give two alterative theories for limits of sparse graphs - one leading to unbounded graphons over probability spaces, and the other leading to bounded graphons (and graphexes) over sigma-finite measure spaces. Talk I, given by Jennifer, will review the general ...

05C80 ; 05C60 ; 60F10 ; 82B20

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Combinatorics

Graphons and graphexes are limits of graphs which allow us to model and estimate properties of large-scale networks. In this pair of talks, we review the theory of dense graph limits, and give two alterative theories for limits of sparse graphs - one leading to unbounded graphons over probability spaces, and the other leading to bounded graphons (and graphexes) over sigma-finite measure spaces. Talk I, given by Jennifer, will review the general theory, highlight the unbounded graphons, and show how they can be used to consistently estimate properties of large sparse networks. This talk will also give an application of these sparse graphons to collaborative filtering on sparse bipartite networks. Talk II, given by Christian, will recast limits of dense graphs in terms of exchangeability and the Aldous Hoover Theorem, and generalize this to obtain sparse graphons and graphexes as limits of subgraph samples from sparse graph sequences. This will provide a dual view of sparse graph limits as processes and random measures, an approach which allows a generalization of many of the well-known results and techniques for dense graph sequences. Graphons and graphexes are limits of graphs which allow us to model and estimate properties of large-scale networks. In this pair of talks, we review the theory of dense graph limits, and give two alterative theories for limits of sparse graphs - one leading to unbounded graphons over probability spaces, and the other leading to bounded graphons (and graphexes) over sigma-finite measure spaces. Talk I, given by Jennifer, will review the general ...

05C80 ; 05C60 ; 60F10 ; 82B20

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Combinatorics;Probability and Statistics

We consider bootstrap percolation on the Erdos-Renyi graph: given an initial infected set, a vertex becomes infected if it has at least $r$ infected neighbours. The graph is susceptible if there exists an initial set of size $r$ that infects the whole graph. We identify the critical threshold for susceptibility. We also analyse Bollobas's related graph-bootstrap percolation model.
Joint with Brett Kolesnik.

05C80 ; 60K35 ; 60J85 ; 82B26 ; 82B43

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Combinatorics;Mathematical Physics;Probability and Statistics

In the first half of the talk, I will survey results and open problems on transience of self-interacting martingales. In particular, I will describe joint works with S. Popov, P. Sousi, R. Eldan and F. Nazarov on the tradeoff between the ambient dimension and the number of different step distributions needed to obtain a recurrent process. In the second, unrelated, half of the talk, I will present joint work with Tom Hutchcroft, showing that the component structure of the uniform spanning forest in $\mathbb{Z}^d$ changes every dimension for $d > 8$. This sharpens an earlier result of Benjamini, Kesten, Schramm and the speaker (Annals Math 2004), where we established a phase transition every four dimensions. The proofs are based on a the connection to loop-erased random walks. In the first half of the talk, I will survey results and open problems on transience of self-interacting martingales. In particular, I will describe joint works with S. Popov, P. Sousi, R. Eldan and F. Nazarov on the tradeoff between the ambient dimension and the number of different step distributions needed to obtain a recurrent process. In the second, unrelated, half of the talk, I will present joint work with Tom Hutchcroft, showing that the ...

05C05 ; 05C80 ; 60G50 ; 60J10 ; 60K35 ; 82B43

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Combinatorics;Computer Science;Probability and Statistics

A non-backtracking walk on a graph is a directed path such that no edge is the inverse of its preceding edge. The non-backtracking matrix of a graph is indexed by its directed edges and can be used to count non-backtracking walks of a given length. It has been used recently in the context of community detection and has appeared previously in connection with the Ihara zeta function and in some generalizations of Ramanujan graphs. In this work, we study the largest eigenvalues of the non-backtracking matrix of the Erdos-Renyi random graph and of the Stochastic Block Model in the regime where the number of edges is proportional to the number of vertices. Our results confirm the "spectral redemption" conjecture that community detection can be made on the basis of the leading eigenvectors above the feasibility threshold. A non-backtracking walk on a graph is a directed path such that no edge is the inverse of its preceding edge. The non-backtracking matrix of a graph is indexed by its directed edges and can be used to count non-backtracking walks of a given length. It has been used recently in the context of community detection and has appeared previously in connection with the Ihara zeta function and in some generalizations of Ramanujan graphs. In this work, we ...

05C50 ; 05C80 ; 68T05 ; 91D30

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.


ISBN 978-0-12-111760-3

Localisation : Colloque 1er étage (DUBL)

05-06 ; 05C55 ; 05C80 ; 05Cxx

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 217 p.
ISBN 978-0-8218-3123-6

Proceedings of the Steklov institute of mathematics , 0177

Localisation : Collection 1er étage

mathematique discrete # probabilite # probleme probabiliste # statistique

05C80 ; 15A04 ; 20M99 ; 40E20 ; 40E99

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.


ISBN 978-0-8218-5500-3

Proceedings of symposia in applied mathematics , 0044

Localisation : Collection 1er étage

calcul du volume des corps convexes # chaîne de Markov se mélangeant rapidement # combinatoire probabiliste # graphe aléatoire # inégalité isopérimétrique discrète # méthode de Fourier finie

05C80 ; 52A20 ; 60C05 ; 60J15 ; 68Q25

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.


ISBN 978-3-540-56622-9

Lecture notes in mathematics , 1541

Localisation : Collection 1er étage

branchement à valeur de mesure # calcul stochastique # distribution de Palm # fonctionnelle de Log-Laplace # mesure aléatoire # mesure de Campbell # probabilité # problème de martingale # processus de Markov naissance # processus de Markov à valeur de mesure # processus de construction à valeur de mesure et interaction # regénération # représentation d'amas de Poisson # représentation de De Finetti # retournement # structure de famille # super mouvement Brownien branchement à valeur de mesure # calcul stochastique # distribution de Palm # fonctionnelle de Log-Laplace # mesure aléatoire # mesure de Campbell # probabilité # problème de martingale # processus de Markov naissance # processus de Markov à valeur de mesure # processus de construction à valeur de mesure et interaction # regénération # représentation d'amas de Poisson # représentation de De Finetti # retournement # structure de famille # super ...

05C80 ; 35R60 ; 60-02 ; 60G48 ; 60G55

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 142 p.
ISBN 978-0-8218-6602-3

DIMACS series in discrete mathematics and theoretical computer science , 0010

Localisation : Collection 1er étage

approche corps de fonction de graphe et diagramme de Ramanuj # construction algébrique de graphe dense de grand contour et # graphe de Cayley aléatoire et expanseur # graphe demi-plan supérieur fini et Ramanujan # graphe en expansion # graphe en expansion hautement tiré de groupe diédral # groupe et expanseur # géométrie spectral et constante de Cheeger # investigation numérique du spectre pour famille de graphe de # laplacien d'hypergraphe # seconde valeur propre et développement linéaire de graphe ré # simulation de chaîne de Markov # échantillonnage uniforme modulo ou groupe de symétrie approche corps de fonction de graphe et diagramme de Ramanuj # construction algébrique de graphe dense de grand contour et # graphe de Cayley aléatoire et expanseur # graphe demi-plan supérieur fini et Ramanujan # graphe en expansion # graphe en expansion hautement tiré de groupe diédral # groupe et expanseur # géométrie spectral et constante de Cheeger # investigation numérique du spectre pour famille de graphe de # laplacien d'hypergraphe # ...

05-06 ; 05C35 ; 05C80 ; 05C85 ; 60Jxx

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.


ISBN 978-0-387-94623-8

The IMA volumes in mathematics and its applications , 0076

Localisation : Colloque 1er étage (MINN)

approximation normale par méthode de Stein # arbre aléatoire # couverture universelle de graphe # distribution aléatoire de masse # distribution de probabilités sur cladogramme # ensemble régénératif # environnement aléatoire # grande déviation # graphe libre de triangle # intersection et limite # marche aléatoire transitoire # matrice positive complètement # méthode du second moment # métrique sur composition et coïncidence # processus aléatoire # recurrence amenabilité # stabilité de processus auto-organisant # structure discrète aléatoire # suite de renouvellement # théorème du cycle impaire long # tresse de jeux de minimax aléatoire # énergie et intersection de chaîne de Markov approximation normale par méthode de Stein # arbre aléatoire # couverture universelle de graphe # distribution aléatoire de masse # distribution de probabilités sur cladogramme # ensemble régénératif # environnement aléatoire # grande déviation # graphe libre de triangle # intersection et limite # marche aléatoire transitoire # matrice positive complètement # méthode du second moment # métrique sur composition et coïncidence # processus ...

05C80 ; 60C05 ; 60J10

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 256 p.
ISBN 978-3-540-30990-1

Lecture notes in mathematics , 1875

Localisation : Collection 1er étage

arbre aléatoire # mouvement brownien # probabilité combinatoire # processu stochastique # combinatoire asymptotique # position aléatoire

05A16 ; 05A18 ; 05C80 ; 60J65 ; 60C05

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- vii; 437 p.
ISBN 978-1-107-60109-3

London mathematical society lecture note series , 0392

Localisation : Collection 1er étage

combinatoires # graphe topologique # hypergraphe # graphe aléatoire

05-06 ; 05C10 ; 05C35 ; 05C65 ; 05C80 ; 00B25

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- vii; 354 p.
ISBN 978-0-444-70265-4

North-Holland mathematics studies , 0144

Localisation : Colloque 1er étage (POZN)

00Bxx ; 05-06 ; 05C80

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- xi; 556 p.
ISBN 978-2-85629-371-3

Astérisque , 0352

Localisation : Périodique 1er étage

Algorithme d'approximation # carte brownienne # cartes planaires # champ libre gaussien # champ moyen # choix social # concentration-compacité # condition nulle # configuration polynomiale # courbe elliptique # D-module holonome # difficulté d'approximation # équation aux dérivées partielles # équations d'Einstein # équations différentielles partielles # équations non-linéaires dispersives # espaces adiques # espaces de Berkovich # espaces homogènes # espaces métriques # espaces normés # espaces perfectoïdes # existence globale # fibré de Higgs # fibré holomorphe plat # forme quartique binaire # formule de KPZ # gravité quantique # groupe de Galois motivique # groupe de Selmer # groupes de Lie # groupes quasi-fuchsiens # hamiltonien # marches aléatoires # mélange exponentiel du fibré des repères # mesures de Liouville # mesures stationnaires # métrique harmonique # modération topologique # monodromie-poids # motifs de Tate mixtes # multizêtas # nonlinéaire # norme d'uniformité # orbites coadjointes # plongement métrique # principe de transfert # programmation semi-définie # Programme de Ribe # progression arithmétique # pureté # rang # réarrangement # Relativité générale # représentations des groupes algébriques réductifs # représentations des groupes de Lie compacts # résonances en espace temps # rigidité # singularités irrégulières # stabilité orbitale # surfaces enfermées # système stellaire auto-gravitant # théorème de Lefschetz difficile # théorie de Hodge # théorie géométrique des invariants # topologie étale # trous noirs # types stablement dominés # variétés de drapeaux # variétés hyperboliques de dimension 3 # Vlasov-Poisson Algorithme d'approximation # carte brownienne # cartes planaires # champ libre gaussien # champ moyen # choix social # concentration-compacité # condition nulle # configuration polynomiale # courbe elliptique # D-module holonome # difficulté d'approximation # équation aux dérivées partielles # équations d'Einstein # équations différentielles partielles # équations non-linéaires dispersives # espaces adiques # espaces de Berkovich # espaces ...

14L24 ; 14M15 ; 20G05 ; 22E46 ; 35-XX ; 35Qxx ; 37-XX ; 37NXX ; 37N20 ; 82-XX ; 82Cxx ; 85-XX ; 85AXX ; 05C12 ; 05C85 ; 46N10 ; 68Q17 ; 68R10 ; 68W25 ; 90C22 ; 91B14 ; 11G99 ; 11G05 ; 11E76 ; 14J60 ; 32C38 ; 53C07 ; 83C57 ; 83C75 ; 83C05 ; 35L67 ; 60C05 ; 60F17 ; 60-02 ; 05C10 ; 05C80 ; 82B20 ; 82B05 ; 82B27 ; 35B34 ; 35E20 ; 35B60 ; 35Q60 ; 35Q35 ; 11N13 ; 11B25 ; 30F99 ; 03C64 ; 03C65 ; 03C99 ; 14G22 ; 11G25 ; 14F20 ; 14G20 ; 22E40 ; 37D40 ; 60B99

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks

The notion of quasi-random graphs was introduced in 1987 by F. R. K. Chung, R. L. Graham and R. M. Wilson, resp. A. Thomason. It has been shown that there is a strong connection between this notion and the pseudorandomness of (finite) binary sequences. This connection can be utilized for constructing large families of quasi-random graphs by considering graphs defined by a circular adjacency matrix whose first column is a binary sequence with strong pseudo-random properties. Starting out from this construction principle one may extend, generalize and sharpen some definitions and results on quasi-randomness of graphs. The notion of quasi-random graphs was introduced in 1987 by F. R. K. Chung, R. L. Graham and R. M. Wilson, resp. A. Thomason. It has been shown that there is a strong connection between this notion and the pseudorandomness of (finite) binary sequences. This connection can be utilized for constructing large families of quasi-random graphs by considering graphs defined by a circular adjacency matrix whose first column is a binary sequence with ...

11K45 ; 11K36 ; 11K31 ; 05C80 ; 05Cxx

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Combinatorics;Probability and Statistics

In this talk I will review the recent developments on weighted distances in scale free random graphs as well as highlight key techniques used in the proofs. We consider graph models where the degree distribution follows a power-law such that the empirical variance of the degrees is infinite, such as the configuration model, geometric inhomogeneous random graphs, or scale free percolation. Once the graph is created according to the model definition, we assign i.i.d. positive edge weights to existing edges, and we are interested in the proper scaling and asymptotic distribution of weighted distances.
In the infinite variance degree regime, a dichotomy can be observed in all these graph models: the edge weight distributions form two classes, explosive vs conservative weight distributions. When a distribution falls into the explosive class, typical distances converge in distribution to proper random variables. While, when a distribution falls into the conservative class, distances tend to infinity with the model size, according to a formula that captures the doubly-logarithmic graph distances as well as the precise behaviour of the distribution of edge-weights around the origin. An integrability condition decides into which class a given distribution falls.
This is joint work with Adriaans, Baroni, van der Hofstad, and Lodewijks.
In this talk I will review the recent developments on weighted distances in scale free random graphs as well as highlight key techniques used in the proofs. We consider graph models where the degree distribution follows a power-law such that the empirical variance of the degrees is infinite, such as the configuration model, geometric inhomogeneous random graphs, or scale free percolation. Once the graph is created according to the model ...

05C80 ; 90B15 ; 60C05 ; 60D05

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Combinatorics;Computer Science;Probability and Statistics

Random hyperbolic graphs (RHG) were proposed rather recently (2010) as a model of real-world networks. Informally speaking, they are like random geometric graphs where the underlying metric space has negative curvature (i.e., is hyperbolic). In contrast to other models of complex networks, RHG simultaneously and naturally exhibit characteristics such as sparseness, small diameter, non-negligible clustering coefficient and power law degree distribution. We will give a slow pace introduction to RHG, explain why they have attracted a fair amount of attention and then survey most of what is known about this promising infant model of real-world networks. Random hyperbolic graphs (RHG) were proposed rather recently (2010) as a model of real-world networks. Informally speaking, they are like random geometric graphs where the underlying metric space has negative curvature (i.e., is hyperbolic). In contrast to other models of complex networks, RHG simultaneously and naturally exhibit characteristics such as sparseness, small diameter, non-negligible clustering coefficient and power law degree ...

05C80 ; 68Q87 ; 74E35

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Combinatorics;Mathematical Physics

Rooted connected chord diagrams can be used to index certain expansions in quantum field theory. There is also a nice bijection between rooted connected chord diagrams and bridgeless maps. I will discuss each of these things as well as how the second sheds light on the first. (Based on work with Nicolas Marie, Markus Hihn, Julien Courtiel, and Noam Zeilberger.)

81T15 ; 81T18 ; 05C80

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research School;Combinatorics

We analyze random labelled cubic planar graphs according to the uniform distribution. This model was analyzed first by Bodirsky et al. in a paper from 2007. Here we revisit and extend their work. The motivation for this revision is twofold. First, some proofs where incomplete with respect to the singularity analysis and we provide full proofs. Secondly, we obtain new results that considerably strengthen those known before. For instance, we show that the number of triangles in random cubic planar graphs is asymptotically normal with linear expectation and variance, while formerly it was only known that it is linear with high probability.
This is based on a joint work with Marc Noy (UPC) and Clément Requilé (FU Berlin - BMS).
We analyze random labelled cubic planar graphs according to the uniform distribution. This model was analyzed first by Bodirsky et al. in a paper from 2007. Here we revisit and extend their work. The motivation for this revision is twofold. First, some proofs where incomplete with respect to the singularity analysis and we provide full proofs. Secondly, we obtain new results that considerably strengthen those known before. For instance, we show ...

05C80 ; 05C10 ; 05A16

... Lire [+]

Z