m

F Nous contacter

0

Documents  37A25 | enregistrements trouvés : 35

O

-A +A

P Q

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Dynamical Systems and Ordinary Differential Equations;Number Theory

The classic mean ergodic theorem has been extended in numerous ways: multiple averages, polynomial iterates, weighted averages, along with combinations of these extensions. I will give an overview of these advances and the different techniques that have been used, focusing on convergence results and what can be said about the limits.

37A05 ; 37A25 ; 37A15

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Combinatorics;Computer Science;Dynamical Systems and Ordinary Differential Equations

We will consider (sub)shifts with complexity such that the difference from $n$ to $n+1$ is constant for all large $n$. The shifts that arise naturally from interval exchange transformations belong to this class. An interval exchange transformation on d intervals has at most $d/2$ ergodic probability measures. We look to establish the correct bound for shifts with constant complexity growth. To this end, we give our current bound and discuss further improvements when more assumptions are allowed. This is ongoing work with Michael Damron. We will consider (sub)shifts with complexity such that the difference from $n$ to $n+1$ is constant for all large $n$. The shifts that arise naturally from interval exchange transformations belong to this class. An interval exchange transformation on d intervals has at most $d/2$ ergodic probability measures. We look to establish the correct bound for shifts with constant complexity growth. To this end, we give our current bound and discuss ...

37B10 ; 37A25 ; 68R15

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Analysis and its Applications;Dynamical Systems and Ordinary Differential Equations

For any countable group, and also for any locally compact second countable, compactly generated topological group, $G$, there exists a "universal" hypercyclic representation on a Hilbert space, in the sense that it simultaneously models every possible ergodic probability measure preserving free action of $G$. I will discuss the original proof of this theorem (a joint work with Benjy Weiss) and then, at the end of the talk, say some words about the development of this idea and its applications as expounded in a subsequent work of Sophie Grivaux. For any countable group, and also for any locally compact second countable, compactly generated topological group, $G$, there exists a "universal" hypercyclic representation on a Hilbert space, in the sense that it simultaneously models every possible ergodic probability measure preserving free action of $G$. I will discuss the original proof of this theorem (a joint work with Benjy Weiss) and then, at the end of the talk, say some words about ...

37A15 ; 37A05 ; 37A25 ; 37A30 ; 47A16 ; 47A67 ; 47D03

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- ix; 316 p.
ISBN 978-1-4704-2773-3

Contemporary mathematics , 0698

Localisation : Collection 1er étage

Nikolai Chernov # système dynamique # théorie ergodique # probabilité # mécanique statistique

11J70 ; 37A25 ; 37A35 ; 37A50 ; 37A60 ; 37C20 ; 37C29 ; 37D50 ; 37E10

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- x; 204 p.
ISBN 978-3-03719-168-2

EMS series of lectures in mathematics

Localisation : Colloque 1er étage (SOUT)

système dynamique # géométrie # théorie ergodique # billard # dynamique complexe # marche aléatoire # théorie des groupes

37-06 ; 37C27 ; 37F45 ; 37A25 ; 37N20 ; 37h05 ; 53A05 ; 00A09 ; 97A80 ; 00B15

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- x; 409 p.
ISBN 978-2-85629-326-3

Astérisque , 0339

Localisation : Périodique 1er étage

groupes de Chow # cycles algébriques # zéro-cycles # corps p-adiques # algèbres de Hecke p-adiques # familles ordinaires # courbe de Hecke # représentations galoisiennes p-adiques # algèbre amassée # théorie de Lie # base canonique # positivité totale # représentation de carquois # système dynamique discret # trou noir # stabilité # Kerr # Schwarzschild # linéaire # méthode di champ de vecteurs # équations de Navier-Stokes #ergodicité # turbulence # correspondance de Langlands # théorie de Hodge p-adique # métrique extrémale # variété torique # K-stabilité # matrices aléatoires # groupes de Lie compacts # espaces classifiants # espaces de lacets # p-complétion # groupes de pseudo-réflexions # groupe algébrique linéaire # groupe pseudo-réductif # restriction des scalaires # conjugaison # structure # classification # groupe fondamental # variété kählérienne # groupe résoluble # invariant de Bieri-Neumann-Strebel # groupe d'automorphismes # groupe libre # groupe de surface # groupe spécial linéaire # action de groupe sur les arbres # espace de Teichmüller # outre-espace de Culler-Vogtmann # géométrie asymptotique des groupes # applications harmoniques # lois de conservation # régularité # suites de Palais-Smale # systèmes antisymétriques # surfaces de Willmore # conjecture des modèles minimaux # seuil log-canonique # condition de chaîne ascendante # approximation m-adique # théorème de connexité de Shokurov # groupes profinis # sous-groupes d'indice fini # sous-groupes verbaux # valeurs des mots groupes de Chow # cycles algébriques # zéro-cycles # corps p-adiques # algèbres de Hecke p-adiques # familles ordinaires # courbe de Hecke # représentations galoisiennes p-adiques # algèbre amassée # théorie de Lie # base canonique # positivité totale # représentation de carquois # système dynamique discret # trou noir # stabilité # Kerr # Schwarzschild # linéaire # méthode di champ de vecteurs # équations de Navier-Stokes #ergodicité # ...

11G25 ; 14C25 ; 14G20 ; 14C35 ; 11F33 ; 11F80 ; 16S99 ; 05E15 ; 22E46 ; 16G20 ; 18E30 ; 35J10 ; 37A25 ; 37A60 ; 37N10 ; 37L55 ; 76F55 ; 76F20 ; 60H15 ; 60H07 ; 35R60 ; 60H30 ; 76B03 ; 35J60 ; 11Fxx ; 11Sxx ; 22Exx ; 53C55 ; 55R35 ; 55P35 ; 20F55 ; 20Gxx ; 20G15 ; 14L15 ; 20G30 ; 20G35 ; 14F35 ; 20F65 ; 32J27 ; 20E08 ; 20E36 ; 20E05 ; 20F69 ; 20G20 ; 53C42 ; 35J40 ; 35D10 ; 58E20 ; 14B05 ; 14E30 ; 14E15 ; 20E18 ; 20F12 ; 20F10 ; 20D99

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 519 p.
ISBN 978-3-7643-8457-9

Progress in probability , 0059

Localisation : Colloque 1er étage (ASCO)

EDP stochastique # système dynamique # analyse fonctionnelle infinie dimensionnelle # méthode probabiliste dans la théorie des espaces de Banach # approximation # ingénierie financière

60-06 ; 34A34 ; 35B35 ; 35K55 ; 35K57 ; 35Q53 ; 37A25 ; 37h05 ; 37L05 ; 37L40 ; 39B62 ; 46B09 ; 46E30 ; 47G99 ; 49N15 ; 60Gxx ; 60Hxx ; 60J60 ; 65C30 ; 65G99 ; 76F05 ; 76M35 ; 82D30 ; 91B28 ; 93E20

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Dynamical Systems and Ordinary Differential Equations;Probability and Statistics

I will discuss the simplest possible (non trivial) example of a fast-slow partially hyperbolic system with particular emphasis on the problem of establishing its statistical properties.

37A25 ; 37C30 ; 37D30 ; 37A50 ; 60F17

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Dynamical Systems and Ordinary Differential Equations

We obtain results on mixing and rates of mixing for infinite measure semiflows and flows. The results on rates of mixing rely on operator renewal theory and a Dolgopyat-type estimate. The results on mixing hold more generally and are based on a deterministic (ie non iid) version of Erickson's continuous time strong renewal theorem.

37A25 ; 37A40 ; 37A50 ; 37D25

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Dynamical Systems and Ordinary Differential Equations

The behaviour of infinite translation surfaces is, in many regards, very different from the finite case. For example, the geodesic flow is often not recurrent or is not even defined for infinite time in a generic direction.
However, we show that if one focuses on a class of infinite translation surfaces that exclude the obvious counter-examples, one can adapted the proof of Kerckhoff, Masur, and Smillie and show that the geodesic flow is uniquely ergodic in almost every direction. We call this class of surface essentially finite.
(joint work with Anja Randecker).
The behaviour of infinite translation surfaces is, in many regards, very different from the finite case. For example, the geodesic flow is often not recurrent or is not even defined for infinite time in a generic direction.
However, we show that if one focuses on a class of infinite translation surfaces that exclude the obvious counter-examples, one can adapted the proof of Kerckhoff, Masur, and Smillie and show that the geodesic flow is ...

37D40 ; 51A40 ; 37A25

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools;Dynamical Systems and Ordinary Differential Equations;Number Theory

In this talk, we will prove the projective equidistribution of integral representations by quadratic norm forms in positive characteristic, with error terms, and deduce asymptotic counting results of these representations. We use the ergodic theory of lattice actions on Bruhat-Tits trees, and in particular the exponential decay of correlation of the geodesic flow on trees for Hölder variables coming from symbolic dynamics techniques.

20E08 ; 11J61 ; 37A25 ; 20G25 ; 37D40

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools;Dynamical Systems and Ordinary Differential Equations

We will discuss old and recent results on topological and measurable dynamics of diagonal and unipotent flows on frame bundles and unit tangent bundles over hyperbolic manifolds. The first lectures will be a good introduction to the subject for young researchers.

37D40 ; 37A17 ; 37A25

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Dynamical Systems and Ordinary Differential Equations;Number Theory

The classic mean ergodic theorem has been extended in numerous ways: multiple averages, polynomial iterates, weighted averages, along with combinations of these extensions. I will give an overview of these advances and the different techniques that have been used, focusing on convergence results and what can be said about the limits.

37A05 ; 37A25 ; 37A15

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Dynamical Systems and Ordinary Differential Equations;Number Theory

The classic mean ergodic theorem has been extended in numerous ways: multiple averages, polynomial iterates, weighted averages, along with combinations of these extensions. I will give an overview of these advances and the different techniques that have been used, focusing on convergence results and what can be said about the limits.

37A05 ; 37A25 ; 37A15

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Dynamical Systems and Ordinary Differential Equations

37A25 ; 37E35

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Dynamical Systems and Ordinary Differential Equations;Probability and Statistics

We study law of rare events for random dynamical systems. We obtain an exponential law (with respect to the invariant measure of the skew-product) for super-polynomially mixing random dynamical systems.
For random subshifts of finite type, we analyze the distribution of hitting times with respect to the sample measures. We prove that with a superpolynomial decay of correlations one can get an exponential law for almost every point and with stronger mixing assumptions one can get a law of rare events depending on the extremal index for every point. (These are joint works with Benoit Saussol and Paulo Varandas, and Mike Todd).
We study law of rare events for random dynamical systems. We obtain an exponential law (with respect to the invariant measure of the skew-product) for super-polynomially mixing random dynamical systems.
For random subshifts of finite type, we analyze the distribution of hitting times with respect to the sample measures. We prove that with a superpolynomial decay of correlations one can get an exponential law for almost every point and with ...

37B20 ; 37A50 ; 37A25 ; 37Dxx

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Dynamical Systems and Ordinary Differential Equations;Probability and Statistics

37A25 ; 37A50 ; 60F17 ; 60G10

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Dynamical Systems and Ordinary Differential Equations;Probability and Statistics

Concentration is an important property of independent random variable, showing that any reasonable function of such variables does not vary a lot around its mean. Observables generated by the iteration of a chaotic enough dynamical system often share a lot of properties with independent random variables. In this survey talk, we discuss several situations where one can prove concentration for them, in uniformly or non-uniformly hyperbolic situations. We also explain why such a property is important to answer relevant geometric or dynamical questions.
concentration - martingales - dynamical systems - Young towers - uniform hyperbolicity - moment bounds
Concentration is an important property of independent random variable, showing that any reasonable function of such variables does not vary a lot around its mean. Observables generated by the iteration of a chaotic enough dynamical system often share a lot of properties with independent random variables. In this survey talk, we discuss several situations where one can prove concentration for them, in uniformly or non-uniformly hyperbolic ...

37A25 ; 37A50 ; 60F15

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks

​We investigate the diffusion and statistical properties of Lorentz gas with cusps at flat points. This is a modification of dispersing billiards with cusps. The decay rates are proven to depend on the degree of the flat points, which varies from $n^{-a}$, for $ a\in (0,\infty)$. The stochastic processes driven by these systems enjoy stable law and have super-diffusion driven by Lévy process. This is a joint work with Paul Jung and Françoise Pène. ​We investigate the diffusion and statistical properties of Lorentz gas with cusps at flat points. This is a modification of dispersing billiards with cusps. The decay rates are proven to depend on the degree of the flat points, which varies from $n^{-a}$, for $ a\in (0,\infty)$. The stochastic processes driven by these systems enjoy stable law and have super-diffusion driven by Lévy process. This is a joint work with Paul Jung and Françoise ...

37D50 ; 37A25 ; 60F05 ; 37D25

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- vi; 141 p.
ISBN 978-3-11-046086-5

Localisation : Ouvrage RdC (ERGO)

théorie ergodique # système dynamique # proximal # distal # flot minimal # cocycle # valeur essentielle # principe d'invariance # dilemme du prisonnier # comportement coopératif stable # stratégie de Markov # stratégie de déterminant zéro # équation de Press-Dyson # jeu d'évolution

37-06 ; 54H20 ; 37A05 ; 60F05 ; 37A25 ; 91A05 ; 60J20 ; 37J50 ; 70H99 ; 37C45 ; 00B15

... Lire [+]

Z