m

Documents  37Axx | enregistrements trouvés : 45

O

-A +A

P Q

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Dynamical Systems and Ordinary Differential Equations;Algebraic and Complex Geometry

How to study the dynamics of a holomorphic polynomial vector field in $\mathbb{C}^{2}$? What is the replacement of invariant measure? I will survey some surprising rigidity results concerning the behavior of these dynamical system. It is helpful to consider the extension of this dynamical system to the projective plane.
Consider a foliation in the projective plane admitting a unique invariant algebraic curve. Assume that the foliation is generic in the sense that its singular points are hyperbolic. With T.-C. Dinh, we showed that there is a unique positive $dd^{c}$-closed (1, 1)-current of mass 1 which is directed by the foliation. This is the current of integration on the invariant curve. A unique ergodicity theorem for the distribution of leaves follows: for any leaf $L$, appropriate averages on $L$ converge to the current of integration on the invariant curve (although generically the leaves are dense). The result uses our theory of densities for currents. It extends to Foliations on Kähler surfaces.
I will describe a recent result, with T.-C. Dinh and V.-A. Nguyen, dealing with foliations on compact Kähler surfaces. If the foliation, has only hyperbolic singularities and does not admit a transverse measure, in particular no invariant compact curve, then there exists a unique positive $dd^{c}$-closed (1, 1)-current of mass 1 which is directed by the foliation( it’s like uniqueness of invariant measure for discrete dynamical systems). This improves on previous results, with J.-E. Fornæss, for foliations (without invariant algebraic curves) on the projective plane. The proof uses a theory of densities for positive $dd^{c}$-closed currents (an intersection theory).
How to study the dynamics of a holomorphic polynomial vector field in $\mathbb{C}^{2}$? What is the replacement of invariant measure? I will survey some surprising rigidity results concerning the behavior of these dynamical system. It is helpful to consider the extension of this dynamical system to the projective plane.
Consider a foliation in the projective plane admitting a unique invariant algebraic curve. Assume that the foliation is ...

37F75 ; 37Axx

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 350 p.

Proceedings of the Steklov institute of mathematics , 0231

Localisation : Collection 1er étage

action de groupe # automate # dynamique # groupe infini # opérateur de Hecke # opérateur de Markov # opérateur de dualité de Poincaré # problème de Ulam # stabilité des quasi-homonorphismes # système dynamique noncommutatif # théorie des groupes # théorie ergodique

20B07 ; 20K30 ; 37A30 ; 37Axx ; 37C85

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 195 p.
ISBN 978-0-8218-2079-7

Contemporary mathematics , 0290

Localisation : Collection 1er étage

théorie des nombres # système dynamique # fonction zeta # fonction zeta dynamique # fonction zeta spectrale # fonction zeta de Riemann # fonction zeta arithmétique # groupe modulaire # opérateur de transfert # calcul analytique # formule trace dynamique # distribution de nombre premier # groupe kleinien # théorie ergodique # fonctin L automorphe # fonction L de Artin # fractale

11F67 ; 11Mxx ; 11Y35 ; 11N05 ; 28A80 ; 30F40 ; 37Axx ; 58J35

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 291 p.
ISBN 978-0-521-78644-7

London mathematical society lecture note series , 0277

Localisation : Collection 1er étage

théorie descriptive des ensembles # système dynamique # théorie ergodique # dynamique topologique # théorème de récurrence de Poincaré # groupe d'automorphisme # espace de mesure # cocycle # dynamique descriptive

03E15 ; 37-06 ; 37Axx ; 37B05 ; 54H20

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 245 p.
ISBN 978-0-521-79660-6

London mathematical society lecture note series , 0279

Localisation : Collection 1er étage

dynamique symbolique # théorie ergodique # dynamique topologique # sous-groupe de Markov # automate fini # entropie topologique # classification topologique # problème diophantien # loi asymptotique # théorie combinatoire de Ramsey

37-06 ; 37Axx ; 37B10

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 258 p.
ISBN 978-0-8218-3351-3

Contemporary mathematics , 0347

Localisation : Collection 1er étage

géométrie différentielle # analyse mathématique # analyse géométrique # noyau de chaleur # marche aléatoire # limite de Poisson sur les groupes discrets # graphe

20-06 ; 60-06 ; 37-06 ; 52-06 ; 52Cxx ; 37Axx

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 443 p.
ISBN

Astérisque , 0261

Localisation : Périodique 1er étage

théorème central limite # Collet-Eckmann # équisingularité # application de Henon # feuilletage holomorphe # mouvement holomorphe # orbite homocline # hyperbolicité # mesure invariante # itération # ensemble de Julia # application de Lorenz # ensemble de Mandelbrot # exposant de Lyapounov positif # application rationelle # mesure SRB # volume

30Cxx ; 30Dxx ; 30Fxx ; 32Axx ; 32Bxx ; 32Gxx ; 32Sxx ; 32Lxx ; 37Axx ; 37Cxx ; 37Dxx ; 37EXX ; 37-XX ; 52Axx ; 53Cxx ; 58Fxx

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- vi; 162 p.
ISBN 978-0-8218-4649-0

Contemporary mathematics , 0485

Localisation : Collection 1er étage

théorie ergodique

28D05 ; 34C28 ; 37A05 ; 37A20 ; 37A45 ; 42A16 ; 47A35 ; 60F15 ; 60G50 ; 62J05 ; 37-06 ; 37Axx ; 00B25

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- xi; 242 p.
ISBN 978-0-8218-4958-3

Contemporary mathematics , 0532

Localisation : Collection 1er étage

théorie des nombres # théorie ergodique # algèbre topologique

11J70 ; 20F65 ; 22D40 ; 30E05 ; 37A15 ; 37A20 ; 37A30 ; 37A35 ; 54H20 ; 60B15 ; 00B25 ; 11-06 ; 37-06 ; 37Axx

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- xxii; 266 p.
ISBN 978-2-85629-312-6

Séminaires et congrès , 0020

Localisation : Collection 1er étage

bêta-numération # application premier retour # applications d'intervalles # applications fer à cheval # applications monotones par morceaux # attracteurs # auto-couplage # automate cellulaire # cobord # convolutions de Bernoulli # décalages markoviens fortement positivement récurrents # développements glouton et paresseux # diagramme de Markov # dimension de Hausdorff # dynamique symbolique # dynamiques directionnelles # échelles de numération # entropie # feuilletage linéaire # flot géodésique # géométrie fractale # invariants par tricotage # mélange faible # mesure d'Erdös # mesure invariante # mesure invariante absolument continue # mesures de Gibbs et faiblement gibbsiennes # mesures d'entropie maximale # métrique euclidienne # nombre d'or # odomètre # orbites périodiques # partition markovienne # pistage # principe variationnel # problème de rigidité # rang faible # section transverse # sous-décalage de Toeplitz # surface plate # surface pointée # système dynamique # systèmes dynamiques en topologie et en combinatoire # systèmes dynamiques minimaux # systèmes dynamiques symboliques # théorie des suites de tricotage # théorie ergodique # transformation de rang un # zêta fonction de Artin-Mazur bêta-numération # application premier retour # applications d'intervalles # applications fer à cheval # applications monotones par morceaux # attracteurs # auto-couplage # automate cellulaire # cobord # convolutions de Bernoulli # décalages markoviens fortement positivement récurrents # développements glouton et paresseux # diagramme de Markov # dimension de Hausdorff # dynamique symbolique # dynamiques directionnelles # échelles de numération # ...

11A67 ; 11K55 ; 15A48 ; 28A12 ; 28D05 ; 28D20 ; 32G15 ; 37Axx ; 37B05 ; 37B10 ; 37B15 ; 37D40 ; 37D45 ; 37E05 ; 30F30 ; 53D25 ; 57R30

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 131 p.

Localisation : Salle de manutention

théorie spectrale # géométrie

35P20 ; 11P21 ; 35J05 ; 58G25 ; 49J15 ; 53Cxx ; 34K35 ; 51N15 ; 51A05 ; 53A20 ; 37D40 ; 37Axx ; 57M27 ; 57M10 ; 57M50 ; 20F67

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- ix; 258 p.
ISBN 978-1-4704-0931-9

Contemporary mathematics , 0631

Localisation : Collection 1er étage

système dynamique différentiable # théorie ergodique # théorie des nombres # mesure de probabilité sur des groupes # dynamique de Teichmüller # approximation Diophantienne # fonction itérative # marche aléatoire # système dynamique algébrique # S. G. Dani

22D40 ; 28D20 ; 37A15 ; 37A17 ; 37A20 ; 37A30 ; 37A35 ; 37B05 ; 37E35 ; 60B15 ; 37-06 ; 37Axx ; 00B25

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools;Combinatorics;Dynamical Systems and Ordinary Differential Equations

* The early results of Ramsey theory :
Hilbert's irreducibility theorem, Dickson-Schur work on Fermat's equation over finite fields, van der Waerden's theorem, Ramsey's theoremand its rediscovery by Erdos and Szekeres.

* Three main principles of Ramsey theory :
First principle: Complete disorder is impossible. Second principle: Behind every 'Partition' result there is a notion of largeness which is responsible for a 'Density' enhancement of this result. Third principle: The sought-after configurations which are always to be found in large sets are abundant.

* Furstenberg's Dynamical approach :
Partition Ramsey theory and topological dynamics Dynamical versions of van der Waerden's theorem, Hindman's theorem and Graham-Rothschild-Spencer's geometric Ramsey.
Density Ramsey theory and Furstenberg's correspondence principle Furstenberg's correspondence principle. Ergodic Szemeredi's theorem. Polynomial Szemeredi theorem. Density version of the Hales-Jewett theorem.

* Stone-Cech compactifications and Hindman's theorem :
Topological algebra in Stone-Cech compactifications. Proof of Hind-man's theorem via Poincare recurrence theorem for ultrafilters.

* IP sets and ergodic Ramsey theory :
Applications of IP sets and idempotent ultrafilters to ergodic-theoretical multiple recurrence and to density Ramsey theory. IP-polynomial Szemeredi theorem.

* Open problems and conjectures

If time permits:
* The nilpotent connection,
* Ergodic Ramsey theory and amenable groups
* The early results of Ramsey theory :
Hilbert's irreducibility theorem, Dickson-Schur work on Fermat's equation over finite fields, van der Waerden's theorem, Ramsey's theoremand its rediscovery by Erdos and Szekeres.

* Three main principles of Ramsey theory :
First principle: Complete disorder is impossible. Second principle: Behind every 'Partition' result there is a notion of largeness which is responsible for a 'Density' enhancement of ...

05D10 ; 37Axx ; 12D10 ; 11D41 ; 54D80 ; 37B20

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools;Combinatorics;Dynamical Systems and Ordinary Differential Equations

* The early results of Ramsey theory :
Hilbert's irreducibility theorem, Dickson-Schur work on Fermat's equation over finite fields, van der Waerden's theorem, Ramsey's theoremand its rediscovery by Erdos and Szekeres.

* Three main principles of Ramsey theory :
First principle: Complete disorder is impossible. Second principle: Behind every 'Partition' result there is a notion of largeness which is responsible for a 'Density' enhancement of this result. Third principle: The sought-after configurations which are always to be found in large sets are abundant.

* Furstenberg's Dynamical approach :
Partition Ramsey theory and topological dynamics Dynamical versions of van der Waerden's theorem, Hindman's theorem and Graham-Rothschild-Spencer's geometric Ramsey.
Density Ramsey theory and Furstenberg's correspondence principle Furstenberg's correspondence principle. Ergodic Szemeredi's theorem. Polynomial Szemeredi theorem. Density version of the Hales-Jewett theorem.

* Stone-Cech compactifications and Hindman's theorem :
Topological algebra in Stone-Cech compactifications. Proof of Hind-man's theorem via Poincare recurrence theorem for ultrafilters.

* IP sets and ergodic Ramsey theory :
Applications of IP sets and idempotent ultrafilters to ergodic-theoretical multiple recurrence and to density Ramsey theory. IP-polynomial Szemeredi theorem.

* Open problems and conjectures

If time permits:
* The nilpotent connection,
* Ergodic Ramsey theory and amenable groups
* The early results of Ramsey theory :
Hilbert's irreducibility theorem, Dickson-Schur work on Fermat's equation over finite fields, van der Waerden's theorem, Ramsey's theoremand its rediscovery by Erdos and Szekeres.

* Three main principles of Ramsey theory :
First principle: Complete disorder is impossible. Second principle: Behind every 'Partition' result there is a notion of largeness which is responsible for a 'Density' enhancement of ...

05D10 ; 37Axx ; 12D10 ; 11D41 ; 54D80 ; 37B20

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools;Combinatorics;Dynamical Systems and Ordinary Differential Equations

* The early results of Ramsey theory :
Hilbert's irreducibility theorem, Dickson-Schur work on Fermat's equation over finite fields, van der Waerden's theorem, Ramsey's theoremand its rediscovery by Erdos and Szekeres.

* Three main principles of Ramsey theory :
First principle: Complete disorder is impossible. Second principle: Behind every 'Partition' result there is a notion of largeness which is responsible for a 'Density' enhancement of this result. Third principle: The sought-after configurations which are always to be found in large sets are abundant.

* Furstenberg's Dynamical approach :
Partition Ramsey theory and topological dynamics Dynamical versions of van der Waerden's theorem, Hindman's theorem and Graham-Rothschild-Spencer's geometric Ramsey.
Density Ramsey theory and Furstenberg's correspondence principle Furstenberg's correspondence principle. Ergodic Szemeredi's theorem. Polynomial Szemeredi theorem. Density version of the Hales-Jewett theorem.

* Stone-Cech compactifications and Hindman's theorem :
Topological algebra in Stone-Cech compactifications. Proof of Hind-man's theorem via Poincare recurrence theorem for ultrafilters.

* IP sets and ergodic Ramsey theory :
Applications of IP sets and idempotent ultrafilters to ergodic-theoretical multiple recurrence and to density Ramsey theory. IP-polynomial Szemeredi theorem.

* Open problems and conjectures

If time permits:
* The nilpotent connection,
* Ergodic Ramsey theory and amenable groups
* The early results of Ramsey theory :
Hilbert's irreducibility theorem, Dickson-Schur work on Fermat's equation over finite fields, van der Waerden's theorem, Ramsey's theoremand its rediscovery by Erdos and Szekeres.

* Three main principles of Ramsey theory :
First principle: Complete disorder is impossible. Second principle: Behind every 'Partition' result there is a notion of largeness which is responsible for a 'Density' enhancement of ...

05D10 ; 37Axx ; 12D10 ; 11D41 ; 54D80 ; 37B20

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools;Combinatorics;Dynamical Systems and Ordinary Differential Equations

* The early results of Ramsey theory :
Hilbert's irreducibility theorem, Dickson-Schur work on Fermat's equation over finite fields, van der Waerden's theorem, Ramsey's theoremand its rediscovery by Erdos and Szekeres.

* Three main principles of Ramsey theory :
First principle: Complete disorder is impossible. Second principle: Behind every 'Partition' result there is a notion of largeness which is responsible for a 'Density' enhancement of this result. Third principle: The sought-after configurations which are always to be found in large sets are abundant.

* Furstenberg's Dynamical approach :
Partition Ramsey theory and topological dynamics Dynamical versions of van der Waerden's theorem, Hindman's theorem and Graham-Rothschild-Spencer's geometric Ramsey.
Density Ramsey theory and Furstenberg's correspondence principle Furstenberg's correspondence principle. Ergodic Szemeredi's theorem. Polynomial Szemeredi theorem. Density version of the Hales-Jewett theorem.

* Stone-Cech compactifications and Hindman's theorem :
Topological algebra in Stone-Cech compactifications. Proof of Hind-man's theorem via Poincare recurrence theorem for ultrafilters.

* IP sets and ergodic Ramsey theory :
Applications of IP sets and idempotent ultrafilters to ergodic-theoretical multiple recurrence and to density Ramsey theory. IP-polynomial Szemeredi theorem.

* Open problems and conjectures

If time permits:
* The nilpotent connection,
* Ergodic Ramsey theory and amenable groups
* The early results of Ramsey theory :
Hilbert's irreducibility theorem, Dickson-Schur work on Fermat's equation over finite fields, van der Waerden's theorem, Ramsey's theoremand its rediscovery by Erdos and Szekeres.

* Three main principles of Ramsey theory :
First principle: Complete disorder is impossible. Second principle: Behind every 'Partition' result there is a notion of largeness which is responsible for a 'Density' enhancement of ...

05D10 ; 37Axx ; 12D10 ; 11D41 ; 54D80 ; 37B20

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools;Combinatorics;Dynamical Systems and Ordinary Differential Equations

* The early results of Ramsey theory :
Hilbert's irreducibility theorem, Dickson-Schur work on Fermat's equation over finite fields, van der Waerden's theorem, Ramsey's theoremand its rediscovery by Erdos and Szekeres.

* Three main principles of Ramsey theory :
First principle: Complete disorder is impossible. Second principle: Behind every 'Partition' result there is a notion of largeness which is responsible for a 'Density' enhancement of this result. Third principle: The sought-after configurations which are always to be found in large sets are abundant.

* Furstenberg's Dynamical approach :
Partition Ramsey theory and topological dynamics Dynamical versions of van der Waerden's theorem, Hindman's theorem and Graham-Rothschild-Spencer's geometric Ramsey.
Density Ramsey theory and Furstenberg's correspondence principle Furstenberg's correspondence principle. Ergodic Szemeredi's theorem. Polynomial Szemeredi theorem. Density version of the Hales-Jewett theorem.

* Stone-Cech compactifications and Hindman's theorem :
Topological algebra in Stone-Cech compactifications. Proof of Hind-man's theorem via Poincare recurrence theorem for ultrafilters.

* IP sets and ergodic Ramsey theory :
Applications of IP sets and idempotent ultrafilters to ergodic-theoretical multiple recurrence and to density Ramsey theory. IP-polynomial Szemeredi theorem.

* Open problems and conjectures

If time permits:
* The nilpotent connection,
* Ergodic Ramsey theory and amenable groups
* The early results of Ramsey theory :
Hilbert's irreducibility theorem, Dickson-Schur work on Fermat's equation over finite fields, van der Waerden's theorem, Ramsey's theoremand its rediscovery by Erdos and Szekeres.

* Three main principles of Ramsey theory :
First principle: Complete disorder is impossible. Second principle: Behind every 'Partition' result there is a notion of largeness which is responsible for a 'Density' enhancement of ...

05D10 ; 37Axx ; 12D10 ; 11D41 ; 54D80 ; 37B20

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools;Combinatorics;Dynamical Systems and Ordinary Differential Equations

* The early results of Ramsey theory :
Hilbert's irreducibility theorem, Dickson-Schur work on Fermat's equation over finite fields, van der Waerden's theorem, Ramsey's theoremand its rediscovery by Erdos and Szekeres.

* Three main principles of Ramsey theory :
First principle: Complete disorder is impossible. Second principle: Behind every 'Partition' result there is a notion of largeness which is responsible for a 'Density' enhancement of this result. Third principle: The sought-after configurations which are always to be found in large sets are abundant.

* Furstenberg's Dynamical approach :
Partition Ramsey theory and topological dynamics Dynamical versions of van der Waerden's theorem, Hindman's theorem and Graham-Rothschild-Spencer's geometric Ramsey.
Density Ramsey theory and Furstenberg's correspondence principle Furstenberg's correspondence principle. Ergodic Szemeredi's theorem. Polynomial Szemeredi theorem. Density version of the Hales-Jewett theorem.

* Stone-Cech compactifications and Hindman's theorem :
Topological algebra in Stone-Cech compactifications. Proof of Hind-man's theorem via Poincare recurrence theorem for ultrafilters.

* IP sets and ergodic Ramsey theory :
Applications of IP sets and idempotent ultrafilters to ergodic-theoretical multiple recurrence and to density Ramsey theory. IP-polynomial Szemeredi theorem.

* Open problems and conjectures

If time permits:
* The nilpotent connection,
* Ergodic Ramsey theory and amenable groups
* The early results of Ramsey theory :
Hilbert's irreducibility theorem, Dickson-Schur work on Fermat's equation over finite fields, van der Waerden's theorem, Ramsey's theoremand its rediscovery by Erdos and Szekeres.

* Three main principles of Ramsey theory :
First principle: Complete disorder is impossible. Second principle: Behind every 'Partition' result there is a notion of largeness which is responsible for a 'Density' enhancement of ...

05D10 ; 37Axx ; 12D10 ; 11D41 ; 54D80 ; 37B20

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools;Combinatorics;Dynamical Systems and Ordinary Differential Equations

* The early results of Ramsey theory :
Hilbert's irreducibility theorem, Dickson-Schur work on Fermat's equation over finite fields, van der Waerden's theorem, Ramsey's theoremand its rediscovery by Erdos and Szekeres.

* Three main principles of Ramsey theory :
First principle: Complete disorder is impossible. Second principle: Behind every 'Partition' result there is a notion of largeness which is responsible for a 'Density' enhancement of this result. Third principle: The sought-after configurations which are always to be found in large sets are abundant.

* Furstenberg's Dynamical approach :
Partition Ramsey theory and topological dynamics Dynamical versions of van der Waerden's theorem, Hindman's theorem and Graham-Rothschild-Spencer's geometric Ramsey.
Density Ramsey theory and Furstenberg's correspondence principle Furstenberg's correspondence principle. Ergodic Szemeredi's theorem. Polynomial Szemeredi theorem. Density version of the Hales-Jewett theorem.

* Stone-Cech compactifications and Hindman's theorem :
Topological algebra in Stone-Cech compactifications. Proof of Hind-man's theorem via Poincare recurrence theorem for ultrafilters.

* IP sets and ergodic Ramsey theory :
Applications of IP sets and idempotent ultrafilters to ergodic-theoretical multiple recurrence and to density Ramsey theory. IP-polynomial Szemeredi theorem.

* Open problems and conjectures

If time permits:
* The nilpotent connection,
* Ergodic Ramsey theory and amenable groups
* The early results of Ramsey theory :
Hilbert's irreducibility theorem, Dickson-Schur work on Fermat's equation over finite fields, van der Waerden's theorem, Ramsey's theoremand its rediscovery by Erdos and Szekeres.

* Three main principles of Ramsey theory :
First principle: Complete disorder is impossible. Second principle: Behind every 'Partition' result there is a notion of largeness which is responsible for a 'Density' enhancement of ...

05D10 ; 37Axx ; 12D10 ; 11D41 ; 54D80 ; 37B20

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools;Combinatorics;Dynamical Systems and Ordinary Differential Equations

* The early results of Ramsey theory :
Hilbert's irreducibility theorem, Dickson-Schur work on Fermat's equation over finite fields, van der Waerden's theorem, Ramsey's theoremand its rediscovery by Erdos and Szekeres.

* Three main principles of Ramsey theory :
First principle: Complete disorder is impossible. Second principle: Behind every 'Partition' result there is a notion of largeness which is responsible for a 'Density' enhancement of this result. Third principle: The sought-after configurations which are always to be found in large sets are abundant.

* Furstenberg's Dynamical approach :
Partition Ramsey theory and topological dynamics Dynamical versions of van der Waerden's theorem, Hindman's theorem and Graham-Rothschild-Spencer's geometric Ramsey.
Density Ramsey theory and Furstenberg's correspondence principle Furstenberg's correspondence principle. Ergodic Szemeredi's theorem. Polynomial Szemeredi theorem. Density version of the Hales-Jewett theorem.

* Stone-Cech compactifications and Hindman's theorem :
Topological algebra in Stone-Cech compactifications. Proof of Hind-man's theorem via Poincare recurrence theorem for ultrafilters.

* IP sets and ergodic Ramsey theory :
Applications of IP sets and idempotent ultrafilters to ergodic-theoretical multiple recurrence and to density Ramsey theory. IP-polynomial Szemeredi theorem.

* Open problems and conjectures

If time permits:
* The nilpotent connection,
* Ergodic Ramsey theory and amenable groups
* The early results of Ramsey theory :
Hilbert's irreducibility theorem, Dickson-Schur work on Fermat's equation over finite fields, van der Waerden's theorem, Ramsey's theoremand its rediscovery by Erdos and Szekeres.

* Three main principles of Ramsey theory :
First principle: Complete disorder is impossible. Second principle: Behind every 'Partition' result there is a notion of largeness which is responsible for a 'Density' enhancement of ...

05D10 ; 37Axx ; 12D10 ; 11D41 ; 54D80 ; 37B20

... Lire [+]

Z