m

F Nous contacter

0

Documents  37D25 | enregistrements trouvés : 30

O

-A +A

P Q

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- xv; 340 p.
ISBN 978-0-8218-4286-7

Contemporary mathematics , 0469

Localisation : Collection 1er étage

système dynamique # méthode probabiliste # géométrie riemannienne # biologie # dynamique symbolique # dynamique stochastique # dynamique aléatoire

37D20 ; 37D25 ; 37D40 ; 37D45 ; 37E05 ; 37H10 ; 37C85 ; 60G07 ; 70H05 ; 37-06 ; 00B25 ; 34-06

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks

​An almost Anosov flow is a flow having continuous flow-invariant splitting of the tangent bundle with exponential expansion/contraction in the unstable/stable direction, except for a finite number (in our case a single) periodic orbits. Roughly, almost Anosov flows are perturbed Anosov flows, where the perturbation is local around these periodic orbits, making them neutral. For this type of flows, we obtain limit theorems (stable, standard and non-standard CLT) for a large class of (unbounded) observables. I will present these results stressing on the method of proof. This is joint work with H. Bruin and M. Todd. ​An almost Anosov flow is a flow having continuous flow-invariant splitting of the tangent bundle with exponential expansion/contraction in the unstable/stable direction, except for a finite number (in our case a single) periodic orbits. Roughly, almost Anosov flows are perturbed Anosov flows, where the perturbation is local around these periodic orbits, making them neutral. For this type of flows, we obtain limit theorems (stable, standard and ...

37D35 ; 60J10 ; 37D25 ; 37A10 ; 37E05

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks

​We investigate the diffusion and statistical properties of Lorentz gas with cusps at flat points. This is a modification of dispersing billiards with cusps. The decay rates are proven to depend on the degree of the flat points, which varies from $n^{-a}$, for $ a\in (0,\infty)$. The stochastic processes driven by these systems enjoy stable law and have super-diffusion driven by Lévy process. This is a joint work with Paul Jung and Françoise Pène. ​We investigate the diffusion and statistical properties of Lorentz gas with cusps at flat points. This is a modification of dispersing billiards with cusps. The decay rates are proven to depend on the degree of the flat points, which varies from $n^{-a}$, for $ a\in (0,\infty)$. The stochastic processes driven by these systems enjoy stable law and have super-diffusion driven by Lévy process. This is a joint work with Paul Jung and Françoise ...

37D50 ; 37A25 ; 60F05 ; 37D25

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Dynamical Systems and Ordinary Differential Equations;Probability and Statistics

It has long been observed that multi-scale systems, particularly those in climatology, exhibit behavior typical of stochastic models, most notably in the unpredictability and statistical variability of events. This is often in spite of the fact that the underlying physical model is completely deterministic. One possible explanation for this stochastic behavior is deterministic chaotic effects. In fact, it has been well established that the statistical properties of chaotic systems can be well approximated by stochastic differential equations. In this talk, we focus on fast-slow ODEs, where the fast, chaotic variables are fed into the slow variables to yield a diffusion approximation. In particular we focus on the case where the chaotic noise is multidimensional and multiplicative. The tools from rough path theory prove useful in this difficult setting. It has long been observed that multi-scale systems, particularly those in climatology, exhibit behavior typical of stochastic models, most notably in the unpredictability and statistical variability of events. This is often in spite of the fact that the underlying physical model is completely deterministic. One possible explanation for this stochastic behavior is deterministic chaotic effects. In fact, it has been well established that the ...

60H10 ; 37D20 ; 37D25 ; 37A50

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Dynamical Systems and Ordinary Differential Equations;Algebraic and Complex Geometry;Topology

We give a necessary and sufficient condition for the existence of infinitely many non-arithmetic Teichmuller curves in a stratum of abelian differentials. This is joint work with Simion Filip and Alex Wright.

30F30 ; 32G15 ; 32G20 ; 14D07 ; 37D25

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Dynamical Systems and Ordinary Differential Equations

We obtain results on mixing and rates of mixing for infinite measure semiflows and flows. The results on rates of mixing rely on operator renewal theory and a Dolgopyat-type estimate. The results on mixing hold more generally and are based on a deterministic (ie non iid) version of Erickson's continuous time strong renewal theorem.

37A25 ; 37A40 ; 37A50 ; 37D25

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools

These lectures are a mostly self-contained sequel to Vaughn Climenhaga’s talks in week 1. The focus of the week 2 lectures will be on uniqueness of equilibrium states for rank 1 geodesic flows, and their mixing properties. Burns, Climenhaga, Fisher and myself showed recently that if the higher rank set does not carry full topological pressure then the equilibrium state is unique. I will discuss the proof of this result. With this result in hand, the question of when the “pressure gap” hypothesis can be verified becomes crucial. I will sketch our proof of the “entropy gap”, which is a new direct constructive proof of a result by Knieper. I will also describe new joint work with Ben Call, which shows that all the unique equilibrium states provided above have the Kolmogorov property. When the manifold has dimension at least 3, this is a new result even for the Knieper-Bowen-Margulis measure of maximal entropy. The common thread that links all of these arguments is that they rely on weak orbit specification properties in the spirit of Bowen. These lectures are a mostly self-contained sequel to Vaughn Climenhaga’s talks in week 1. The focus of the week 2 lectures will be on uniqueness of equilibrium states for rank 1 geodesic flows, and their mixing properties. Burns, Climenhaga, Fisher and myself showed recently that if the higher rank set does not carry full topological pressure then the equilibrium state is unique. I will discuss the proof of this result. With this result in hand, ...

37D35 ; 37D40 ; 37C40 ; 37D25

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools

These lectures are a mostly self-contained sequel to Vaughn Climenhaga’s talks in week 1. The focus of the week 2 lectures will be on uniqueness of equilibrium states for rank 1 geodesic flows, and their mixing properties. Burns, Climenhaga, Fisher and myself showed recently that if the higher rank set does not carry full topological pressure then the equilibrium state is unique. I will discuss the proof of this result. With this result in hand, the question of when the “pressure gap” hypothesis can be verified becomes crucial. I will sketch our proof of the “entropy gap”, which is a new direct constructive proof of a result by Knieper. I will also describe new joint work with Ben Call, which shows that all the unique equilibrium states provided above have the Kolmogorov property. When the manifold has dimension at least 3, this is a new result even for the Knieper-Bowen-Margulis measure of maximal entropy. The common thread that links all of these arguments is that they rely on weak orbit specification properties in the spirit of Bowen. These lectures are a mostly self-contained sequel to Vaughn Climenhaga’s talks in week 1. The focus of the week 2 lectures will be on uniqueness of equilibrium states for rank 1 geodesic flows, and their mixing properties. Burns, Climenhaga, Fisher and myself showed recently that if the higher rank set does not carry full topological pressure then the equilibrium state is unique. I will discuss the proof of this result. With this result in hand, ...

37D35 ; 37D40 ; 37C40 ; 37D25

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools

These lectures are a mostly self-contained sequel to Vaughn Climenhaga’s talks in week 1. The focus of the week 2 lectures will be on uniqueness of equilibrium states for rank 1 geodesic flows, and their mixing properties. Burns, Climenhaga, Fisher and myself showed recently that if the higher rank set does not carry full topological pressure then the equilibrium state is unique. I will discuss the proof of this result. With this result in hand, the question of when the “pressure gap” hypothesis can be verified becomes crucial. I will sketch our proof of the “entropy gap”, which is a new direct constructive proof of a result by Knieper. I will also describe new joint work with Ben Call, which shows that all the unique equilibrium states provided above have the Kolmogorov property. When the manifold has dimension at least 3, this is a new result even for the Knieper-Bowen-Margulis measure of maximal entropy. The common thread that links all of these arguments is that they rely on weak orbit specification properties in the spirit of Bowen. These lectures are a mostly self-contained sequel to Vaughn Climenhaga’s talks in week 1. The focus of the week 2 lectures will be on uniqueness of equilibrium states for rank 1 geodesic flows, and their mixing properties. Burns, Climenhaga, Fisher and myself showed recently that if the higher rank set does not carry full topological pressure then the equilibrium state is unique. I will discuss the proof of this result. With this result in hand, ...

37D35 ; 37D40 ; 37C40 ; 37D25

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools

Smooth parametrizations of semi-algebraic sets were introduced by Yomdin in order to bound the local volume growth in his proof of Shub’s entropy conjecture for C∞ maps. In this minicourse we will present some refinement of Yomdin’s theory which allows us to also control the distortion. We will give two new applications: - for any C∞ surface diffeomorphism f with positive entropy the saddle periodic points with Lyapunov exponents $\delta$-away from zero for $\delta \in]0,htop(f)[$ are equidistributed along measures of maximal entropy. - for C∞ maps the entropy is physically greater than or equal to the top Lyapunov exponents of the exterior powers. Smooth parametrizations of semi-algebraic sets were introduced by Yomdin in order to bound the local volume growth in his proof of Shub’s entropy conjecture for C∞ maps. In this minicourse we will present some refinement of Yomdin’s theory which allows us to also control the distortion. We will give two new applications: - for any C∞ surface diffeomorphism f with positive entropy the saddle periodic points with Lyapunov exponents $\delta$-away ...

37C05 ; 37C40 ; 37D25

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools

Smooth parametrizations of semi-algebraic sets were introduced by Yomdin in order to bound the local volume growth in his proof of Shub’s entropy conjecture for C∞ maps. In this minicourse we will present some refinement of Yomdin’s theory which allows us to also control the distortion. We will give two new applications: - for any C∞ surface diffeomorphism f with positive entropy the saddle periodic points with Lyapunov exponents $\delta$-away from zero for $\delta \in]0,htop(f)[$ are equidistributed along measures of maximal entropy. - for C∞ maps the entropy is physically greater than or equal to the top Lyapunov exponents of the exterior powers. Smooth parametrizations of semi-algebraic sets were introduced by Yomdin in order to bound the local volume growth in his proof of Shub’s entropy conjecture for C∞ maps. In this minicourse we will present some refinement of Yomdin’s theory which allows us to also control the distortion. We will give two new applications: - for any C∞ surface diffeomorphism f with positive entropy the saddle periodic points with Lyapunov exponents $\delta$-away ...

37C05 ; 37C40 ; 37D25

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools

Smooth parametrizations of semi-algebraic sets were introduced by Yomdin in order to bound the local volume growth in his proof of Shub’s entropy conjecture for C∞ maps. In this minicourse we will present some refinement of Yomdin’s theory which allows us to also control the distortion. We will give two new applications: - for any C∞ surface diffeomorphism f with positive entropy the saddle periodic points with Lyapunov exponents $\delta$-away from zero for $\delta \in]0,htop(f)[$ are equidistributed along measures of maximal entropy. - for C∞ maps the entropy is physically greater than or equal to the top Lyapunov exponents of the exterior powers. Smooth parametrizations of semi-algebraic sets were introduced by Yomdin in order to bound the local volume growth in his proof of Shub’s entropy conjecture for C∞ maps. In this minicourse we will present some refinement of Yomdin’s theory which allows us to also control the distortion. We will give two new applications: - for any C∞ surface diffeomorphism f with positive entropy the saddle periodic points with Lyapunov exponents $\delta$-away ...

37C05 ; 37C40 ; 37D25

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 151 p.
ISBN 978-0-8218-2921-9

University lecture series , 0023

Localisation : Collection 1er étage

système dynamique # théorie ergodique # théorie ergodique continue # exposant de Lyapunov # système hyperbolique non-uniforme # variété stable # variété locale

37C40 ; 37D25 ; 34D08

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 280 p.
ISBN 978-3-540-20611-8

Lecture notes in mathematics , 1833

Localisation : Collection 1er étage

physique statistique # production d'entropie # irréversibilité # équilibre # chaîne de Markov # processus de diffusion # système dynamique hyperbolique # fluctuation de Gallavotti-Cohen

37D20 ; 37D25 ; 37D35 ; 37D45 ; 37H15 ; 58J65 ; 60F10 ; 60G10 ; 60H10 ; 60J10 ; 60J27 ; 60J35 ; 60J60 ; 82C05 ; 82C31 ; 82C35

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 122 p.
ISBN 978-3-03719-003-6

Zurich lectures in advanced mathematics

Localisation : Ouvrage RdC (PESI)

système dynamique # hyperbolicité partielle # ergodicité stable # système hyperbolique non-uniforme # exposant de Lyapunov # foliation # continuité # système dynamique continu

37-02 ; 37D25 ; 37C40 ; 37A30 ; 37D40

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 316 p.
ISBN 978-0-8218-4096-2

Mathematical surveys and monographs , 0127

Localisation : Collection 1er étage

dynamique # système dynamique # comportement chaotique des systèmes # théorie ergodique # théorie de la mesure # probabilités billiards # système hyperbolique non-uniforme # équilibre # exposant de Lyapunov # billiard de Burnimovich

37D50 ; 37D25 ; 37A25 ; 37N05 ; 82B99

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 281 p.
ISBN 978-0-521-86813-6

Cambridge monographs on applied and computational mathematics , 0022

Localisation : Ouvrage RdC (STUR)

application dérivant de la verticlae # système dynamique # mélange # hiérarchie ergodique # ergodicité # propriété de Bernouilli # exposant de Lyapunov # hyperbolicité # torus # fer cheval # biologie

37E40 ; 37-02 ; 37A25 ; 37N10 ; 37N25 ; 37B05 ; 37B10 ; 37B25 ; 37D20 ; 37D25 ; 76-02

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 513 p.
ISBN 978-0-521-83258-8

Encyclopedia of mathematics and its applications , 0115

Localisation : Collection 1er étage;Réserve

système dynamique # comportement hyperbolique # théorie ergodique # système hyperbolique non uniforme

37D25 ; 37Axx ; 37Cxx ; 37Dxx ; 37-02

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 339 p.
ISBN 978-0-8218-4274-4

Fields institute communications , 0051

Localisation : Collection 1er étage

système dynamique # théorie ergodique # ergodicité lisse # système hyperbolique # flots sur surface # méthode quasiconforme # théorie de Teichmüller # foliation # groupe de Kleinian # surface modulaire de Riemann

37C40 ; 37D25 ; 37D30 ; 37E35 ; 37F30 ; 37C85 ; 30F60 ; 30F40 ; 32G15

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- iii, 106 p.
ISBN 978-0-8218-4656-8

Memoirs of the american mathematical society , 0967

Localisation : Collection 1er étage

système dynamique # exposants de Lyapunov # théorie ergodique # espace de Banach # théorème ergodique multiplicatif # variétés invariantes

37H15 ; 37L55 ; 37A30 ; 47A35 ; 37D10 ; 37D25

... Lire [+]

Z