m

Documents  60B20 | enregistrements trouvés : 55

O

-A +A

P Q

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks

60B20 ; 60J80 ; 15B05

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- viii; 174 p.
ISBN 978-0-8218-9471-2

Proceedings of symposia in applied mathematics , 0072

Localisation : Collection 1er étage

matrice aléatoire # théorie des nombres # algèbre linéaire # matrice de Wigner # probabilité libre

15-06 ; 60-06 ; 00B25 ; 15B52 ; 60B20 ; 11C20 ; 05D40 ; 60H25 ; 62-07

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- vi; 471 p.
ISBN 978-1-4704-2248-6

Proceedings of symposia in pure mathematics , 0091

Localisation : Collection 1er étage

probabilités # physique statistique # théorie ergodique # marche aléatoire # chaîne de Markov # modèle de Potts # mesure invariante # champ Gaussien

60K35 ; 82B43 ; 82C43 ; 60B20 ; 05C81 ; 82B41 ; 82C41 ; 60J25

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- xi; 373 p.
ISBN 978-3-0348-0489-9

Progress in probability , 0066

Localisation : Colloque 1er étage (BANF)

loi de probabilité # théorème limite # espace de dimension infinie # espace de Hilbert # espace de Banach # matrice aléatoire # statistique non paramétrique # processus empirique # concentration de la mesure # approximation forte # approximation faible # optimisation combinatoire # théorie des graphes aléatoires

60-XX ; 62-XX ; 60-06 ; 60Exx ; 60Fxx ; 60Gxx ; 62Gxx ; 60B20 ; 15B52 ; 00B25

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- ix; 297 p.
ISBN 978-1-4704-2534-0

Contemporary mathematics , 0661

Localisation : Collection 1er étage

Edward B. Saff # théorie de l'approximation # analyse constructive

11P21 ; 26C10 ; 31A15 ; 33C50 ; 35L67 ; 40A15 ; 41A21 ; 42C05 ; 60B20

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- xvi; 486 p.
ISBN 978-3-03719-186-6

EMS series of congress reports

Localisation : Colloque 1er étage (TRON)

analyse infinitésimale # équation aux dérivées partielles # loi de conservation hyperbolique # analyse stochastique # théorie spectrale # évolution discrète # système complètement intégrable # matrice aléatoire # dynamique chaotique

15B52 ; 35J10 ; 35L65 ; 35Q41 ; 35Q51 ; 35Q53 ; 37K10 ; 42B20 ; 46N20 ; 46N30 ; 46T12 ; 47B36 ; 47F05 ; 60H20 ; 68N30 ; 76S05 ; 33C45 ; 35A01 ; 35A02 ; 35L80 ; 37D45 ; 39A12 ; 47A10 ; 47N20 ; 47N30 ; 60B20

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- xii; 345 p.
ISBN 978-0-8218-8747-9

Contemporary mathematics , 0593

Localisation : Collection 1er étage

courbe algébrique # équation de Painlevé # équation différentielle # système hamiltonnien # équation différentielle non-linéaire

34M55 ; 37K10 ; 05C30 ; 14D21 ; 14H15 ; 39A20 ; 33E17 ; 60B20 ; 00B25 ; 14-06 ; 34-06 ; 37-06 ; 05-06 ; 60-06 ; 14Hxx ; 34MXX ; 37KXX

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.


ISBN 978-3-540-56011-1

Lecture notes in mathematics , 1525

Localisation : Collection 1er étage

géométrie diophantienne # géométrie non commutative # informatique théorique # modèle intégrable # noeud en mathématique et en physique # philosophie # équation différentielle non linéaire

00-02 ; 60B20

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks

60B20 ; 05C80 ; 05C81 ; 05C85 ; 05C05

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Exposés de recherche

We consider the domino tilings of a large class of Aztec rectangles. For an appropriate scaling limit, we show that, the disordered region consists of roughly two arctic circles connected with a finite number of paths. The statistics of these paths is governed by a kernel, also found in other models (universality). The kernel thus obtained is believed to be a master kernel, from which the kernels, associated with critical points, can all be derived. We consider the domino tilings of a large class of Aztec rectangles. For an appropriate scaling limit, we show that, the disordered region consists of roughly two arctic circles connected with a finite number of paths. The statistics of these paths is governed by a kernel, also found in other models (universality). The kernel thus obtained is believed to be a master kernel, from which the kernels, associated with critical points, can all be ...

60B20 ; 60D05

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Exposés de recherche

Random band matrices (RBM) are natural intermediate models to study eigenvalue statistics and quantum propagation in disordered systems, since they interpolate between mean-field type Wigner matrices and random Schrodinger operators. In particular, RBM can be used to model the Anderson metal-insulator phase transition (crossover) even in 1d. In this talk we will discuss some recent progress in application of the supersymmetric method (SUSY) and transfer matrix approach to the analysis of local spectral characteristics of some specific types of 1d RBM. Joint project with Maria Shcherbina. Random band matrices (RBM) are natural intermediate models to study eigenvalue statistics and quantum propagation in disordered systems, since they interpolate between mean-field type Wigner matrices and random Schrodinger operators. In particular, RBM can be used to model the Anderson metal-insulator phase transition (crossover) even in 1d. In this talk we will discuss some recent progress in application of the supersymmetric method ...

60B20 ; 15B52

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks

05C80 ; 05C81 ; 05C85 ; 05C05 ; 60B20

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Exposés de recherche

In this talk, we discuss the application of the Yang-Baxter equation for the quantum affine lie algebra $U_{q} \left (\widehat{ {\mathfrak{sl}}_{n+1}} \right )$ to interacting particle systems.
The asymmetric simple exclusion process (ASEP) is a continuous-time Markov process of interacting particles on the integer lattice. We distinguish particles to be either a first class or a second class particle. In particular, the second class particles are blocked in their movement by all other particles, while the first class particles are only blocked by other first class particles. We consider the step initial conditions so that all non-negative integer positions are occupied and all other positions are vacant at time zero. Moreover, we take exactly L second class particles to be located at the very front of the configuration at time zero. Then, using recent results of Tracy-Widom (2017) and Borodin-Wheeler (2018), we compute the asymptotic speed of the leftmost second class particle.
This is joint work with Promit Ghosal (Columbia University) and Ethan Zell (University of Virginia) in arXiv:1903.09615.
In this talk, we discuss the application of the Yang-Baxter equation for the quantum affine lie algebra $U_{q} \left (\widehat{ {\mathfrak{sl}}_{n+1}} \right )$ to interacting particle systems.
The asymmetric simple exclusion process (ASEP) is a continuous-time Markov process of interacting particles on the integer lattice. We distinguish particles to be either a first class or a second class particle. In particular, the second class particles ...

34M50 ; 60B20 ; 34E20

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Special events;30 Years of Wavelets;Analysis and its Applications;Probability and Statistics

One of the important "products" of wavelet theory consists in the insight that it is often beneficial to consider sparsity in signal processing applications. In fact, wavelet compression relies on the fact that wavelet expansions of real-world signals and images are usually sparse. Compressive sensing builds on sparsity and tells us that sparse signals (expansions) can be recovered from incomplete linear measurements (samples) efficiently. This finding triggered an enormous research activity in recent years both in signal processing applications as well as their mathematical foundations. The present talk discusses connections of compressive sensing and time-frequency analysis (the sister of wavelet theory). In particular, we give on overview on recent results on compressive sensing with time-frequency structured random matrices.

Keywords: compressive sensing - time-frequency analysis - wavelets - sparsity - random matrices - $\ell_1$-minimization - radar - wireless communications
One of the important "products" of wavelet theory consists in the insight that it is often beneficial to consider sparsity in signal processing applications. In fact, wavelet compression relies on the fact that wavelet expansions of real-world signals and images are usually sparse. Compressive sensing builds on sparsity and tells us that sparse signals (expansions) can be recovered from incomplete linear measurements (samples) efficiently. This ...

94A20 ; 94A08 ; 42C40 ; 60B20 ; 90C25

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks

60B20 ; 05C80 ; 05C81 ; 05C85 ; 05C05

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Exposés de recherche

The talk concerned with the asymptotic empirical eigenvalue distribution of a non linear random matrix ensemble. More precisely we consider $M=
\frac{1}{m} YY^*$ with $Y=f(WX)$ where W and X are random rectangular matrices with i.i.d. centered entries. The function f is applied pointwise and can be seen as an activation function in (random) neural networks. We compute the asymptotic empirical distribution of this ensemble in the case where W and X have subGaussian tails and f is smooth. This extends a result of [PW17] where the case of Gaussian matrices W and X is considered. We also investigate the same questions in the multi-layer case, regarding neural network applications.
The talk concerned with the asymptotic empirical eigenvalue distribution of a non linear random matrix ensemble. More precisely we consider $M=
\frac{1}{m} YY^*$ with $Y=f(WX)$ where W and X are random rectangular matrices with i.i.d. centered entries. The function f is applied pointwise and can be seen as an activation function in (random) neural networks. We compute the asymptotic empirical distribution of this ensemble in the case where W ...

60B20 ; 15B52

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks

05C80 ; 05C81 ; 05C85 ; 05C05 ; 60B20

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Exposés de recherche

We give a new expression for the law of the eigenvalues of the discrete Anderson model on the finite interval [0, N], in terms of two random processes starting at both ends of the interval. Using this formula, we deduce that the tail of the eigenvectors behaves approximately like exponential of a Brownian motion with a drift. A similar result has recently been shown by B. Rifkind and B. Virag in the critical case, that is, when the random potential is multiplied by a factor 1/ √N. We give a new expression for the law of the eigenvalues of the discrete Anderson model on the finite interval [0, N], in terms of two random processes starting at both ends of the interval. Using this formula, we deduce that the tail of the eigenvectors behaves approximately like exponential of a Brownian motion with a drift. A similar result has recently been shown by B. Rifkind and B. Virag in the critical case, that is, when the random ...

60B20 ; 65F15

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research School

We will investigate the form of spatio-temporal correlation functions for integrable models of systems of particles on the line. There are few analytical results for nonlinear systems, and so we start developing intuition from harmonic chains, where steepest descent analysis yields detailed asymptotic behaviour of the correlation functions in a variety of scaling limits. We will introduce integrable nonlinear lattices, explain the integrable solution procedure, as well as computational simulations to see dynamics of correlation functions in action. We will investigate the form of spatio-temporal correlation functions for integrable models of systems of particles on the line. There are few analytical results for nonlinear systems, and so we start developing intuition from harmonic chains, where steepest descent analysis yields detailed asymptotic behaviour of the correlation functions in a variety of scaling limits. We will introduce integrable nonlinear lattices, explain the integrable ...

60B20 ; 60K35 ; 37K10

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Exposés de recherche

The universality properties of the Sine process (corresponding to inverse temperature beta equal to 2) are now well known. More generally, a family of point processes have been introduced by Valko and Virag and shown to be the bulk limit of Gaussian beta ensembles, for any positive beta. They are defined through a one-parameter family of SDEs coupled by a two-dimensional Brownian motion (or more recently as the spectrum of a random operator). Through these descriptions, some properties have been derived by Holcomb, Paquette, Valko, Virag and others but there is still much to understand.
In a work with David Dereudre, Adrien Hardy (Université de Lille) and Thomas Leblé (Courant Institute, New York), we use tools from classical statistical mechanics based on DLR equations to give a completely different description of the Sine beta process and derive some properties, such as rigidity and tolerance.
The universality properties of the Sine process (corresponding to inverse temperature beta equal to 2) are now well known. More generally, a family of point processes have been introduced by Valko and Virag and shown to be the bulk limit of Gaussian beta ensembles, for any positive beta. They are defined through a one-parameter family of SDEs coupled by a two-dimensional Brownian motion (or more recently as the spectrum of a random operator). ...

60B20 ; 60G55

... Lire [+]

Z