m

F Nous contacter

0

Documents  60G55 | enregistrements trouvés : 69

O

-A +A

P Q

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools

Le but de ce cours sera de présenter quelques techniques liées aux processus de Schur, dans le cadre le plus simple de la mesure de Plancherel sur les partitions d'entiers.
La mesure de Plancherel est une mesure sur l'ensemble des partitions d'un entier n, où une partition donnée apparaît avec une probabilité proportionnelle au carré de son nombre de tableaux de Young standard. Cette mesure apparaît très naturellement en lien avec le fameux problème de Ulam-Hammersley, qui consiste à étudier la longueur d'une plus longue sous-suite croissante d'une permutation uniforme de {1,...,n}. Il est en fait fructueux de travailler avec une version "poissonisée" du problème, où la taille n est tirée selon une loi de Poisson, dont on fera tendre le paramètre vers l'infini afin d'étudier les asymptotiques.
Dans la première séance, nous verrons que la mesure de Plancherel poissonisée est en fait un processus déterminantal, dont le noyau de corrélation fait intervenir les fonctions de Bessel. Nous utiliserons pour cela le formalisme de l'espace de Fock fermionique. (Toutes les notions nécessaires seront introduites au fur et à mesure, de la manière la plus élémentaire possible.)
Dans la seconde séance, nous étudierons les différentes asymptotiques du noyau de corrélation, par une application élégante de la méthode du col due à Okounkov et Reshetikhin. Nous verrons en particulier apparaître un phénomène de forme-limite, le noyau sinus discret dans le cas des limites "bulk" et le noyau d'Airy dans la limite "edge". In fine, nous aboutirons à une preuve du théorème de Baik-Deift-Johansson (1998) énonçant que les fluctuations de la longueur d'une plus longue sous-suite croissante d'une permutation uniforme ont asymptotiquement la même distribution que la plus grande valeur propre d'une matrice hermitienne aléatoire.
Le but de ce cours sera de présenter quelques techniques liées aux processus de Schur, dans le cadre le plus simple de la mesure de Plancherel sur les partitions d'entiers.
La mesure de Plancherel est une mesure sur l'ensemble des partitions d'un entier n, où une partition donnée apparaît avec une probabilité proportionnelle au carré de son nombre de tableaux de Young standard. Cette mesure apparaît très naturellement en lien avec le fameux ...

05A17 ; 05E10 ; 60C05 ; 60G55

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Combinatorics;Probability and Statistics

62M30 ; 60G55 ; 62C20 ; 05C38

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Analysis and its Applications;Mathematical Physics;Probability and Statistics

Two important examples of the determinantal point processes associated with the Hilbert spaces of holomorphic functions are the Ginibre point process and the set of zeros of the Gaussian Analytic Functions on the unit disk. In this talk, I will talk such class of determinantal point processes in greater generality. The main topics concerned are the equivalence of the reduced Palm measures and the quasi-invariance of these point processes under certain natural group action of the group of compactly supported diffeomorphisms of the phase space. This talk is based partly on the joint works with Alexander I. Bufetov and partly on a more recent joint work with Alexander I. Bufetov and Shilei Fan. Two important examples of the determinantal point processes associated with the Hilbert spaces of holomorphic functions are the Ginibre point process and the set of zeros of the Gaussian Analytic Functions on the unit disk. In this talk, I will talk such class of determinantal point processes in greater generality. The main topics concerned are the equivalence of the reduced Palm measures and the quasi-invariance of these point processes under ...

60G55 ; 46E20 ; 30H20

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools;Geometry;Probability and Statistics

La géométrie stochastique est l'étude d'objets issus de la géométrie euclidienne dont le comportement relève du hasard. Si les premiers problèmes de probabilités géométriques ont été posés sous la forme de casse-têtes mathématiques, le domaine s'est considérablement développé depuis une cinquantaine d'années de part ses multiples applications, notamment en sciences expérimentales, et aussi ses liens avec l'analyse d'algorithmes géométriques. L'exposé sera centré sur la description des polytopes aléatoires qui sont construits comme enveloppes convexes d'un ensemble aléatoire de points. On s'intéressera plus particulièrement aux cas d'un nuage de points uniformes dans un corps convexe fixé ou d'un nuage de points gaussiens et on se focalisera sur l'étude asymptotique de grandeurs aléatoires associées, en particulier via des calculs de variances limites. Seront également évoqués d'autres modèles classiques de la géométrie aléatoire tels que la mosaïque de Poisson-Voronoi. La géométrie stochastique est l'étude d'objets issus de la géométrie euclidienne dont le comportement relève du hasard. Si les premiers problèmes de probabilités géométriques ont été posés sous la forme de casse-têtes mathématiques, le domaine s'est considérablement développé depuis une cinquantaine d'années de part ses multiples applications, notamment en sciences expérimentales, et aussi ses liens avec l'analyse d'algorithmes géométriques. ...

60D05 ; 60F05 ; 52A22 ; 60G55

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Probability and Statistics

We give an asymptotic theory for the eigenvalues of the sample covariance matrix of a multivariate time series. The time series constitutes a linear process across time and between components. The input noise of the linear process has regularly varying tails with index $\alpha \in \left ( 0,4 \right )$; in particular, the time series has infinite fourth moment. We derive the limiting behavior for the largest eigenvalues of the sample covariance matrix and show point process convergence of the normalized eigenvalues. The limiting process has an explicit form involving points of a Poisson process and eigenvalues of a non-negative denite matrix. Based on this convergence we derive limit theory for a host of other continuous functionals of the eigenvalues, including the joint convergence of the largest eigenvalues, the joint convergence of the largest eigenvalue and the trace of the sample covariance matrix, and the ratio of the largest eigenvalue to their sum. This is joint work with Richard A. Davis (Columbia NY) and Oliver Pfaffel (Munich). We give an asymptotic theory for the eigenvalues of the sample covariance matrix of a multivariate time series. The time series constitutes a linear process across time and between components. The input noise of the linear process has regularly varying tails with index $\alpha \in \left ( 0,4 \right )$; in particular, the time series has infinite fourth moment. We derive the limiting behavior for the largest eigenvalues of the sample covariance ...

62G32 ; 60G55

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Probability and Statistics

The freezing in the title refers to a property of point processes: let $\left ( X_i \right )_{i\geq 1}$ denote a point process which is locally finite and has finite maximum. For a function f continuous of compact support, define $Z_f=f\left ( X_1 \right )+f\left ( X_2 \right )+....$ We say that freezing occurs if the Laplace transform of $Z_f$ depends on f only through a shift. I will discuss this notion and its equivalence with other properties of the point process. In particular, such freezing occurs for the extremal process in branching random walks and in certain versions of the (discrete) two dimensional GFF.
Joint work with Eliran Subag
The freezing in the title refers to a property of point processes: let $\left ( X_i \right )_{i\geq 1}$ denote a point process which is locally finite and has finite maximum. For a function f continuous of compact support, define $Z_f=f\left ( X_1 \right )+f\left ( X_2 \right )+....$ We say that freezing occurs if the Laplace transform of $Z_f$ depends on f only through a shift. I will discuss this notion and its equivalence with other ...

60G55 ; 60J65 ; 60J80

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- xvi; 406 p.
ISBN 978-1-4939-3075-3

Fields institute communications , 0076

Localisation : Collection 1er étage

Miklos Csörgo # méthode asymptotique # probabilités # statistiques # processus planaire # loi des grands nombres # série temporelle # processus stochastique

60-02 ; 62-02 ; 60F05 ; 60F15 ; 60F17 ; 60G15 ; 60G17 ; 60G50 ; 60G55 ; 60J55 ; 60J65 ; 60K37 ; 62G30 ; 62M10

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- xxiv; 446 p.
ISBN 978-3-642-33304-0

Lecture notes in mathematics , 2068

Localisation : Collection 1er étage

géométrie stochastique # analyse spatiale # champs aléatoires # statistiques spatiales

60D05 ; 52A22 ; 60G55 ; 60G60 ; 60G57 ; 60F05 ; 60F15 ; 60J25 ; 62M30 ; 65C40 ; 60-06 ; 00B25

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 284 p.
ISBN 978-3-540-38174-7

Lecture notes in mathematics , 1892

Localisation : Collection 1er étage

probabilités # probabilités géométriques # géométrie stochastique # statistiques de surfaces # point aléatoire # géométrie intégrale # ensemble aléatoire # mosaïques aléatoires # processus de cristallisation

60D05 ; 60G55 ; 62H11 ; 52A22 ; 53C65

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.


ISBN 978-3-540-56622-9

Lecture notes in mathematics , 1541

Localisation : Collection 1er étage

branchement à valeur de mesure # calcul stochastique # distribution de Palm # fonctionnelle de Log-Laplace # mesure aléatoire # mesure de Campbell # probabilité # problème de martingale # processus de Markov naissance # processus de Markov à valeur de mesure # processus de construction à valeur de mesure et interaction # regénération # représentation d'amas de Poisson # représentation de De Finetti # retournement # structure de famille # super mouvement Brownien branchement à valeur de mesure # calcul stochastique # distribution de Palm # fonctionnelle de Log-Laplace # mesure aléatoire # mesure de Campbell # probabilité # problème de martingale # processus de Markov naissance # processus de Markov à valeur de mesure # processus de construction à valeur de mesure et interaction # regénération # représentation d'amas de Poisson # représentation de De Finetti # retournement # structure de famille # super ...

05C80 ; 35R60 ; 60-02 ; 60G48 ; 60G55

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 386 p.
ISBN 978-0-8218-5087-9

Contemporary mathematics , 0080

Localisation : Collection 1er étage

biométrie # processus ponctuel # processus stochastique # série temporelle

60G44 ; 60G55 ; 60G57 ; 62M10 ; 62P10

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.


ISBN 978-0-444-85432-2

Colloquia mathematica societatis janos bolyai , 0024

Localisation : Colloque 1er étage (DEBR)

commande hystérétique # entropie # hytérésis # noyau de Papangelou # problème d'attente # processus de points # processus rénovatif ou régénératif # système géostochastique # théorie de l'attente # train d'allumage de neurone simple

60-06 ; 60G55 ; 60K25

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Exposés de recherche

We identify the persistence probability for the zero-temperature non-equilibrium Glauber dynamics of the half-space Ising chain as a particular Painlevé VI transcendent, with monodromy exponents (1/2,1/2,0,0). Among other things, this characterization a la Tracy-Widom permits to relate our specific Bonnet-Painlevé VI to the one found by Jimbo & Miwa and characterizing the diagonal correlation functions for the planar static Ising model. In particular, in terms of the standard critical exponents eta=1/4 and beta=1/8 for the latter, this implies that the probability that the limiting Gaussian real Kac's polynomial has no real root decays with an exponent 4(eta+beta)=3/4. We identify the persistence probability for the zero-temperature non-equilibrium Glauber dynamics of the half-space Ising chain as a particular Painlevé VI transcendent, with monodromy exponents (1/2,1/2,0,0). Among other things, this characterization a la Tracy-Widom permits to relate our specific Bonnet-Painlevé VI to the one found by Jimbo & Miwa and characterizing the diagonal correlation functions for the planar static Ising model. In ...

34M55 ; 60G55 ; 34M35

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Exposés de recherche

The universality properties of the Sine process (corresponding to inverse temperature beta equal to 2) are now well known. More generally, a family of point processes have been introduced by Valko and Virag and shown to be the bulk limit of Gaussian beta ensembles, for any positive beta. They are defined through a one-parameter family of SDEs coupled by a two-dimensional Brownian motion (or more recently as the spectrum of a random operator). Through these descriptions, some properties have been derived by Holcomb, Paquette, Valko, Virag and others but there is still much to understand.
In a work with David Dereudre, Adrien Hardy (Université de Lille) and Thomas Leblé (Courant Institute, New York), we use tools from classical statistical mechanics based on DLR equations to give a completely different description of the Sine beta process and derive some properties, such as rigidity and tolerance.
The universality properties of the Sine process (corresponding to inverse temperature beta equal to 2) are now well known. More generally, a family of point processes have been introduced by Valko and Virag and shown to be the bulk limit of Gaussian beta ensembles, for any positive beta. They are defined through a one-parameter family of SDEs coupled by a two-dimensional Brownian motion (or more recently as the spectrum of a random operator). ...

60B20 ; 60G55

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Exposés de recherche

The determinantal point processes arise naturally from different areas such as random matrices, representation theory, random graphs and zeros of holomorphic functions etc. In this talk, we will briefly talk about determinantal point processes related to spaces of holomorphic functions, in particular, we will discuss some results concerning the conditional measures, rigidity property and the Olshanskis problem on this area. The talk will be based on several works joint with Alexander Bufetov, Alexander Shamov and Shilei Fan. The determinantal point processes arise naturally from different areas such as random matrices, representation theory, random graphs and zeros of holomorphic functions etc. In this talk, we will briefly talk about determinantal point processes related to spaces of holomorphic functions, in particular, we will discuss some results concerning the conditional measures, rigidity property and the Olshanskis problem on this area. The talk will be ...

60G55

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Exposés de recherche

We study the expectation of the matrix of overlaps of left and right eigenvectors in the complex Ginibre ensemble, conditioned on a fixed number of k complex eigenvalues.
The diagonal (k=1) and off-diagonal overlap (k=2) were introduced by Chalker and Mehlig. They provided exact expressions for finite matrix size N, in terms of a large determinant of size proportional to N. In the large-N limit these overlaps were determined on the global scale and heuristic arguments for the local scaling at the origin were given. The topic has seen a rapid development in the recent past. Our contribution is to derive exact determinantal expressions of size k x k in terms of a kernel, valid for finite N and arbitrary k.
It can be expressed as an operator acting on the complex eigenvalue correlation functions and allows us to determine all local correlations in the bulk close to the origin, and at the spectral edge. The methods we use are bi-orthogonal polynomials in the complex plane and the analyticity of the diagonal overlap for general k.
This is joint work with Roger Tribe, Athanasios Tsareas, and Oleg Zaboronski as appeared in arXiv:1903.09016 [math-ph]
We study the expectation of the matrix of overlaps of left and right eigenvectors in the complex Ginibre ensemble, conditioned on a fixed number of k complex eigenvalues.
The diagonal (k=1) and off-diagonal overlap (k=2) were introduced by Chalker and Mehlig. They provided exact expressions for finite matrix size N, in terms of a large determinant of size proportional to N. In the large-N limit these overlaps were determined on the global scale ...

60B20 ; 60G55

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools

Le but de ce cours sera de présenter quelques techniques liées aux processus de Schur, dans le cadre le plus simple de la mesure de Plancherel sur les partitions d'entiers.
La mesure de Plancherel est une mesure sur l'ensemble des partitions d'un entier n, où une partition donnée apparaît avec une probabilité proportionnelle au carré de son nombre de tableaux de Young standard. Cette mesure apparaît très naturellement en lien avec le fameux problème de Ulam-Hammersley, qui consiste à étudier la longueur d'une plus longue sous-suite croissante d'une permutation uniforme de {1,...,n}. Il est en fait fructueux de travailler avec une version "poissonisée" du problème, où la taille n est tirée selon une loi de Poisson, dont on fera tendre le paramètre vers l'infini afin d'étudier les asymptotiques.
Dans la première séance, nous verrons que la mesure de Plancherel poissonisée est en fait un processus déterminantal, dont le noyau de corrélation fait intervenir les fonctions de Bessel. Nous utiliserons pour cela le formalisme de l'espace de Fock fermionique. (Toutes les notions nécessaires seront introduites au fur et à mesure, de la manière la plus élémentaire possible.)
Dans la seconde séance, nous étudierons les différentes asymptotiques du noyau de corrélation, par une application élégante de la méthode du col due à Okounkov et Reshetikhin. Nous verrons en particulier apparaître un phénomène de forme-limite, le noyau sinus discret dans le cas des limites "bulk" et le noyau d'Airy dans la limite "edge". In fine, nous aboutirons à une preuve du théorème de Baik-Deift-Johansson (1998) énonçant que les fluctuations de la longueur d'une plus longue sous-suite croissante d'une permutation uniforme ont asymptotiquement la même distribution que la plus grande valeur propre d'une matrice hermitienne aléatoire.
Le but de ce cours sera de présenter quelques techniques liées aux processus de Schur, dans le cadre le plus simple de la mesure de Plancherel sur les partitions d'entiers.
La mesure de Plancherel est une mesure sur l'ensemble des partitions d'un entier n, où une partition donnée apparaît avec une probabilité proportionnelle au carré de son nombre de tableaux de Young standard. Cette mesure apparaît très naturellement en lien avec le fameux ...

05A17 ; 05E10 ; 60C05 ; 60G55

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research School

Determinantal point processes arise in a wide range of problems in asymptotic combinatorics, representation theory and mathematical physics, especially the theory of random matrices. While our understanding of determinantal point processes has greatly advanced in the last 20 years, many open problems remain. The course will give an elementary introduction to determinantal point processes, starting from the basics and leading on to open problems.

PROGRAMME.
1. Examples.
2. Limit theorems.
3. Palm-Khintchine theory. Quasi-symmetries.
4. Determinantal point processes and extrapolation.
Determinantal point processes arise in a wide range of problems in asymptotic combinatorics, representation theory and mathematical physics, especially the theory of random matrices. While our understanding of determinantal point processes has greatly advanced in the last 20 years, many open problems remain. The course will give an elementary introduction to determinantal point processes, starting from the basics and leading on to open ...

60G55

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research School

Determinantal point processes arise in a wide range of problems in asymptotic combinatorics, representation theory and mathematical physics, especially the theory of random matrices. While our understanding of determinantal point processes has greatly advanced in the last 20 years, many open problems remain. The course will give an elementary introduction to determinantal point processes, starting from the basics and leading on to open problems.

PROGRAMME.
1. Examples.
2. Limit theorems.
3. Palm-Khintchine theory. Quasi-symmetries.
4. Determinantal point processes and extrapolation.
Determinantal point processes arise in a wide range of problems in asymptotic combinatorics, representation theory and mathematical physics, especially the theory of random matrices. While our understanding of determinantal point processes has greatly advanced in the last 20 years, many open problems remain. The course will give an elementary introduction to determinantal point processes, starting from the basics and leading on to open ...

60G55

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research School

Determinantal point processes arise in a wide range of problems in asymptotic combinatorics, representation theory and mathematical physics, especially the theory of random matrices. While our understanding of determinantal point processes has greatly advanced in the last 20 years, many open problems remain. The course will give an elementary introduction to determinantal point processes, starting from the basics and leading on to open problems.

PROGRAMME.
1. Examples.
2. Limit theorems.
3. Palm-Khintchine theory. Quasi-symmetries.
4. Determinantal point processes and extrapolation.
Determinantal point processes arise in a wide range of problems in asymptotic combinatorics, representation theory and mathematical physics, especially the theory of random matrices. While our understanding of determinantal point processes has greatly advanced in the last 20 years, many open problems remain. The course will give an elementary introduction to determinantal point processes, starting from the basics and leading on to open ...

60G55

... Lire [+]

Z