m

F Nous contacter

0

Documents  81V80 | enregistrements trouvés : 12

O
     

-A +A

P Q

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research School;Mathematical Physics

Quantum optical systems provides one of the best physical settings to engineer quantum many-body systems of atoms and photons, which can be controlled and measured on the level of single quanta. In this course we will provide an introduction to quantum optics from the perspective of control and measurement, and in light of possible applications including quantum computing and quantum communication.
The first part of the course will introduce the basic quantum optical systems and concepts as ’closed’ (i.e. isolated) quantum systems. We start with laser driven two-level atoms, the Jaynes-Cummings model of Cavity Quantum Electro-dynamics, and illustrate with the example of trapped ions control of the quantum motion of atoms via laser light. This will lead us to the model system of an ion trap quantum computer where we employ control ideas to design quantum gates.
In the second part of the course we will consider open quantum optical systems. Here the system of interest is coupled to a bosonic bath or environment (e.g. vacuum modes of the radiation field), providing damping and decoherence. We will develop the theory for the example of a radiatively damped two-level atom, and derive the corresponding master equation, and discuss its solution and physical interpretation. On a more advanced level, and as link to the mathematical literature, we establish briefly the connection to topics like continuous measurement theory (of photon counting), the Quantum Stochastic Schrödinger Equation, and quantum trajectories (here as as time evolution of a radiatively damped atom conditional to observing a given photon count trajectory). As an example of the application of the formalism we discuss quantum state transfer in a quantum optical network.
Parts of this video related to ongoing unpublished research have been cut off.
Quantum optical systems provides one of the best physical settings to engineer quantum many-body systems of atoms and photons, which can be controlled and measured on the level of single quanta. In this course we will provide an introduction to quantum optics from the perspective of control and measurement, and in light of possible applications including quantum computing and quantum communication.
The first part of the course will introduce the ...

81P68 ; 81V80

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 221 p.
ISBN 978-0-8218-0861-0

Contemporary mathematics , 0217

Localisation : Collection 1er étage

EDP # comportement asymptotique des solutions # intéraction électromagnétique # modèle aléatoire # mécanique statistique # optique quantique # opérateur de Sebrödinger # opérateur différentiel # probabilité # problème de valeur propre # propriété qualitative des solutions # système de particule intéractive # système désordonné # système physique spécifique # théorie quantique # théorie spectrale # théorème limite # électromagnétique quantique # équation de la physique mathématique # équation différentielle EDP # comportement asymptotique des solutions # intéraction électromagnétique # modèle aléatoire # mécanique statistique # optique quantique # opérateur de Sebrödinger # opérateur différentiel # probabilité # problème de valeur propre # propriété qualitative des solutions # système de particule intéractive # système désordonné # système physique spécifique # théorie quantique # théorie spectrale # théorème limite # électromagnétique quantique # ...

35B40 ; 35J10 ; 35P05 ; 35P15 ; 35P30 ; 35Q30 ; 60Fxx ; 81Q10 ; 81V10 ; 81V80

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 245 p.
ISBN 978-0-387-98581-7

The IMA volumes in mathematics and its applications , 0101

Localisation : Colloque 1er étage (MINN)

optique # optique non-linéaire # application # amplification optique # laser # soliton # électronique # électron

78-06 ; 78A60 ; 78A10 ; 78A15 ; 78A40 ; 78A55 ; 81V80 ; 82D30

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 211 p.
ISBN 978-0-8218-3330-8

CRM proceedings & lecture notes , 0033

Localisation : Collection 1er étage

système dynamique différentiable # géométrie algébrique # EDP # propriété de Kowaleski # singularité # équation de Painlevé # déformation isomonodromique # système complètement intégrable # soliton # monodromie

81D07 ; 49J20 ; 81V10 ; 81V80 ; 78A60 ; 81P68

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- xii; 215 p.
ISBN 978-3-0348-0358-8

Progress in mathematical physics , 0063

Localisation : Colloque 1er étage (PARI)

théorie quantique # mesure du temps # dynamique différentiable # distribution

37A35 ; 37A60 ; 37N20 ; 81V80 ; 82-02 ; 82C05 ; 82C35 ; 82C40 ; 83F05 ; 00B15 ; 00A79 ; 82-06 ; 83-06

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research School;Mathematical Physics

Quantum optical systems provides one of the best physical settings to engineer quantum many-body systems of atoms and photons, which can be controlled and measured on the level of single quanta. In this course we will provide an introduction to quantum optics from the perspective of control and measurement, and in light of possible applications including quantum computing and quantum communication.
The first part of the course will introduce the basic quantum optical systems and concepts as ’closed’ (i.e. isolated) quantum systems. We start with laser driven two-level atoms, the Jaynes-Cummings model of Cavity Quantum Electro-dynamics, and illustrate with the example of trapped ions control of the quantum motion of atoms via laser light. This will lead us to the model system of an ion trap quantum computer where we employ control ideas to design quantum gates.
In the second part of the course we will consider open quantum optical systems. Here the system of interest is coupled to a bosonic bath or environment (e.g. vacuum modes of the radiation field), providing damping and decoherence. We will develop the theory for the example of a radiatively damped two-level atom, and derive the corresponding master equation, and discuss its solution and physical interpretation. On a more advanced level, and as link to the mathematical literature, we establish briefly the connection to topics like continuous measurement theory (of photon counting), the Quantum Stochastic Schrödinger Equation, and quantum trajectories (here as as time evolution of a radiatively damped atom conditional to observing a given photon count trajectory). As an example of the application of the formalism we discuss quantum state transfer in a quantum optical network.
Parts of this video related to ongoing unpublished research have been cut off.
Quantum optical systems provides one of the best physical settings to engineer quantum many-body systems of atoms and photons, which can be controlled and measured on the level of single quanta. In this course we will provide an introduction to quantum optics from the perspective of control and measurement, and in light of possible applications including quantum computing and quantum communication.
The first part of the course will introduce the ...

81P68 ; 81V80

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research School;Mathematical Physics

Quantum optical systems provides one of the best physical settings to engineer quantum many-body systems of atoms and photons, which can be controlled and measured on the level of single quanta. In this course we will provide an introduction to quantum optics from the perspective of control and measurement, and in light of possible applications including quantum computing and quantum communication.
The first part of the course will introduce the basic quantum optical systems and concepts as ’closed’ (i.e. isolated) quantum systems. We start with laser driven two-level atoms, the Jaynes-Cummings model of Cavity Quantum Electro-dynamics, and illustrate with the example of trapped ions control of the quantum motion of atoms via laser light. This will lead us to the model system of an ion trap quantum computer where we employ control ideas to design quantum gates.
In the second part of the course we will consider open quantum optical systems. Here the system of interest is coupled to a bosonic bath or environment (e.g. vacuum modes of the radiation field), providing damping and decoherence. We will develop the theory for the example of a radiatively damped two-level atom, and derive the corresponding master equation, and discuss its solution and physical interpretation. On a more advanced level, and as link to the mathematical literature, we establish briefly the connection to topics like continuous measurement theory (of photon counting), the Quantum Stochastic Schrödinger Equation, and quantum trajectories (here as as time evolution of a radiatively damped atom conditional to observing a given photon count trajectory). As an example of the application of the formalism we discuss quantum state transfer in a quantum optical network.
Parts of this video related to ongoing unpublished research have been cut off.
Quantum optical systems provides one of the best physical settings to engineer quantum many-body systems of atoms and photons, which can be controlled and measured on the level of single quanta. In this course we will provide an introduction to quantum optics from the perspective of control and measurement, and in light of possible applications including quantum computing and quantum communication.
The first part of the course will introduce the ...

81P68 ; 81V80

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research School;Mathematical Physics

Quantum optical systems provides one of the best physical settings to engineer quantum many-body systems of atoms and photons, which can be controlled and measured on the level of single quanta. In this course we will provide an introduction to quantum optics from the perspective of control and measurement, and in light of possible applications including quantum computing and quantum communication.
The first part of the course will introduce the basic quantum optical systems and concepts as ’closed’ (i.e. isolated) quantum systems. We start with laser driven two-level atoms, the Jaynes-Cummings model of Cavity Quantum Electro-dynamics, and illustrate with the example of trapped ions control of the quantum motion of atoms via laser light. This will lead us to the model system of an ion trap quantum computer where we employ control ideas to design quantum gates.
In the second part of the course we will consider open quantum optical systems. Here the system of interest is coupled to a bosonic bath or environment (e.g. vacuum modes of the radiation field), providing damping and decoherence. We will develop the theory for the example of a radiatively damped two-level atom, and derive the corresponding master equation, and discuss its solution and physical interpretation. On a more advanced level, and as link to the mathematical literature, we establish briefly the connection to topics like continuous measurement theory (of photon counting), the Quantum Stochastic Schrödinger Equation, and quantum trajectories (here as as time evolution of a radiatively damped atom conditional to observing a given photon count trajectory). As an example of the application of the formalism we discuss quantum state transfer in a quantum optical network.
Parts of this video related to ongoing unpublished research have been cut off.
Quantum optical systems provides one of the best physical settings to engineer quantum many-body systems of atoms and photons, which can be controlled and measured on the level of single quanta. In this course we will provide an introduction to quantum optics from the perspective of control and measurement, and in light of possible applications including quantum computing and quantum communication.
The first part of the course will introduce the ...

81P68 ; 81V80

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 231 p.

Localisation : Ouvrage RdC (REIC)

modèle moléculaire # spectre de Röntgen # statistique classique # série optique # théorie des gaz # théorie moléculaire des corps solides # théorie quantique

81V55 ; 81V80

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 557 p.
ISBN 978-90-277-2594-3

Localisation : Oeuvres Complètes RdC (LAND)

Landé # compressibilité de cristaux réguliers # cristal # cristaux # hypothèse quantique # intersection des particules élémentaires # mécanique quantique # oeuvres complètes # optique # physique des particules # physique nucléaire # polyèdre # réseau d'électrons # spectre à haute fréquence # thermodynamique # théorie des quanta # théorie des radiations # théorie quantique # électro- optique

01A75 ; 81-03 ; 81Sxx ; 81V35 ; 81V80

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- xiv; 677 p.
ISBN 978-94-007-7204-5

Theoretical and mathematical physics

Localisation : Ouvrage RdC (AKUL)

système quantique complexe # dynamique des systèmes multi-niveaux # système de bande # système quantique ouvert # réseau et circuit quantique # molécule de Rydberg # vibration moléculaire

81-01 ; 81P40 ; 81S22 ; 81Q93 ; 81V55 ; 81V80

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.


ISBN 978-3-540-27238-0

Mathématiques & applications , 0049

Localisation : Collection 1er étage

optique quantique # équation de Schrödinger # équation de Maxwell # équation de Bloch # équation de taux # équation enveloppante # problème de Cauchy # schéma de Yee # schéma de Crank-Nicholson # modèle de Debye # modèle de Lorentz

35L45 ; 35Q55 ; 35Q60 ; 65M06 ; 65M12 ; 81V10 ; 81V80

... Lire [+]

Z