m

F Nous contacter

0

Documents  81P68 | enregistrements trouvés : 30

O

-A +A

P Q

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research School;Mathematical Physics

Quantum optical systems provides one of the best physical settings to engineer quantum many-body systems of atoms and photons, which can be controlled and measured on the level of single quanta. In this course we will provide an introduction to quantum optics from the perspective of control and measurement, and in light of possible applications including quantum computing and quantum communication.
The first part of the course will introduce the basic quantum optical systems and concepts as ’closed’ (i.e. isolated) quantum systems. We start with laser driven two-level atoms, the Jaynes-Cummings model of Cavity Quantum Electro-dynamics, and illustrate with the example of trapped ions control of the quantum motion of atoms via laser light. This will lead us to the model system of an ion trap quantum computer where we employ control ideas to design quantum gates.
In the second part of the course we will consider open quantum optical systems. Here the system of interest is coupled to a bosonic bath or environment (e.g. vacuum modes of the radiation field), providing damping and decoherence. We will develop the theory for the example of a radiatively damped two-level atom, and derive the corresponding master equation, and discuss its solution and physical interpretation. On a more advanced level, and as link to the mathematical literature, we establish briefly the connection to topics like continuous measurement theory (of photon counting), the Quantum Stochastic Schrödinger Equation, and quantum trajectories (here as as time evolution of a radiatively damped atom conditional to observing a given photon count trajectory). As an example of the application of the formalism we discuss quantum state transfer in a quantum optical network.
Parts of this video related to ongoing unpublished research have been cut off.
Quantum optical systems provides one of the best physical settings to engineer quantum many-body systems of atoms and photons, which can be controlled and measured on the level of single quanta. In this course we will provide an introduction to quantum optics from the perspective of control and measurement, and in light of possible applications including quantum computing and quantum communication.
The first part of the course will introduce the ...

81P68 ; 81V80

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- vii; 152 p.
ISBN 978-0-8218-4975-0

Contemporary mathematics , 0536

Localisation : Collection 1er étage

théorie quantique # calcul quantique

81P68 ; 81-01 ; 81-02 ; 81-06 ; 00B25

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- ix; 348 p.
ISBN 978-0-8218-4828-9

Proceedings of symposia in applied mathematics , 0068

Localisation : Collection 1er étage

théorie quantique # théorie de la mesure quantique # cohérence quantique # information quantique # algorithme quantique # topologie de faible dimension # représentation de groupe # application à la physique

81P15 ; 81P68 ; 68Q12 ; 57M25 ; 57M27 ; 20C35 ; 81-06 ; 57Mxx ; 00B25

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- vii; 240 p.
ISBN 978-0-8218-4627-8

Contemporary mathematics , 0482

Localisation : Collection 1er étage

théorie quantique # communication quantique # théorie de la représentation # théorie des catégories

81P68 ; 81T18 ; 81V10 ; 68M07 ; 37F25 ; 20F36 ; 57M25 ; 57M27 ; 47N55

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 380 p.
ISBN 978-3-540-76891-3

Lecture notes in mathematics , 1931

Localisation : Collection 1er étage

groupe de Lie # analyse harmonique abstraite # espace symétrique # groupe semi simple # analyse globale # correspondance Langlands # groupe algébrique complexe # cryptographie quantique # calcul numérique quantique

22Exx ; 43-06 ; 17Bxx ; 58-06 ; 81P68

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 380p.
ISBN 978-3-540-76891-3

Lecture notes in mathematics , 1931

Localisation : Collection 1er étage

groupe topologique # groupe de Lie # analyse harmonique abstraite # algèbre non-associative # algèbre de Lie # analyse globale # algorithme quantique

22-06 ; 43-06 ; 17-06 ; 58-06 ; 22Exx ; 43-XX ; 17Bxx ; 81P68 ; 00B25

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 147 p.
ISBN 978-0-8218-3600-2

Contemporary mathematics , 0381

Localisation : Collection 1er étage

théorie quantique # théorie des codes # calcul quantique # cryptographie # informatique # base de Gröbner # courbe algébrique

81P68 ; 68Q05 ; 94B05 ; 05E20

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 348 p.
ISBN 978-0-8218-3618-7

Contemporary mathematics , 0378

Localisation : Collection 1er étage

groupe libre # groupe fini # groupe infini # langage formel # mot infini # splitting # théorie combinatoire des groupes

20-06 ; 20B40 ; 20E05 ; 20F28 ; 81P68

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 224 p.
ISBN 978-0-8218-3483-1

Contemporary mathematics , 0349

Localisation : Collection 1er étage

théorie des groupes # groupe de permutation # groupe non-abélien # théorie quantique # informatique # algorithme # groupe d'automorphisme # calcul quantique

20B40 ; 20E05 ; 20F28 ; 81P68 ; 68Q05 ; 68Q17 ; 68Q42 ; 68Q45 ; 68T05

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 211 p.
ISBN 978-0-8218-3330-8

CRM proceedings & lecture notes , 0033

Localisation : Collection 1er étage

système dynamique différentiable # géométrie algébrique # EDP # propriété de Kowaleski # singularité # équation de Painlevé # déformation isomonodromique # système complètement intégrable # soliton # monodromie

81D07 ; 49J20 ; 81V10 ; 81V80 ; 78A60 ; 81P68

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 224 p.
ISBN 978-0-8218-3202-8

Contemporary mathematics , 0317

Localisation : Collection 1er étage

analyse fonctionnelle # Gross # analyse fonctionnelle non linéaire # analyse dimensionnelle # EDP stochastique # analyse de bruit # mouvement brownien # analyse de Segal-Bargmann # noyau de la chaleur # application

60H40 ; 28C20 ; 60G20 ; 46N50 ; 46L52 ; 58J35 ; 31C25 ; 62P05 ; 81P68 ; 81S30

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 310 p.
ISBN 978-0-8218-2140-4

Contemporary mathematics , 0305

Localisation : Collection 1er étage

théorie quantique # théorie de l'information # calcul quantique # modèle de calcul # groupe # algèbre # cryptographie

81-06 ; 94-06 ; 81P68

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 358 p.
ISBN 978-0-8218-2084-1

Proceedings of symposia in applied mathematics , 0058

Localisation : Collection 1er étage

théorie quantique # calcul quantique # algorithme quantique # complexité quantique # code correcteur d'erreur # cryptographie quantique

81-01 ; 81-02 ; 81P68 ; 68Q05 ; 94A60

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research School;Mathematical Physics

Quantum optical systems provides one of the best physical settings to engineer quantum many-body systems of atoms and photons, which can be controlled and measured on the level of single quanta. In this course we will provide an introduction to quantum optics from the perspective of control and measurement, and in light of possible applications including quantum computing and quantum communication.
The first part of the course will introduce the basic quantum optical systems and concepts as ’closed’ (i.e. isolated) quantum systems. We start with laser driven two-level atoms, the Jaynes-Cummings model of Cavity Quantum Electro-dynamics, and illustrate with the example of trapped ions control of the quantum motion of atoms via laser light. This will lead us to the model system of an ion trap quantum computer where we employ control ideas to design quantum gates.
In the second part of the course we will consider open quantum optical systems. Here the system of interest is coupled to a bosonic bath or environment (e.g. vacuum modes of the radiation field), providing damping and decoherence. We will develop the theory for the example of a radiatively damped two-level atom, and derive the corresponding master equation, and discuss its solution and physical interpretation. On a more advanced level, and as link to the mathematical literature, we establish briefly the connection to topics like continuous measurement theory (of photon counting), the Quantum Stochastic Schrödinger Equation, and quantum trajectories (here as as time evolution of a radiatively damped atom conditional to observing a given photon count trajectory). As an example of the application of the formalism we discuss quantum state transfer in a quantum optical network.
Parts of this video related to ongoing unpublished research have been cut off.
Quantum optical systems provides one of the best physical settings to engineer quantum many-body systems of atoms and photons, which can be controlled and measured on the level of single quanta. In this course we will provide an introduction to quantum optics from the perspective of control and measurement, and in light of possible applications including quantum computing and quantum communication.
The first part of the course will introduce the ...

81P68 ; 81V80

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Computer Science;Mathematical Physics

81P68 ; 81P05 ; 81P15 ; 94A17

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Computer Science;Mathematical Physics

68Q12 ; 81P68 ; 68Q05

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Mathematical Physics

Combining the relativistic speed limit on transmitting information with linearity and unitarity of quantum mechanics leads to a relativistic extension of the no-cloning principle called spacetime replication of quantum information. We introduce continuous-variable spacetime-replication protocols, expressed in a Gaussian-state basis, that build on novel homologically constructed continuous-variable quantum error correcting codes. Compared to qubit encoding, our continuous-variable solution requires half as many shares per encoded system. We show an explicit construction for the five-mode case and how it can be implemented experimentally. As well we analyze the ramifications of finite squeezing on the protocol. Combining the relativistic speed limit on transmitting information with linearity and unitarity of quantum mechanics leads to a relativistic extension of the no-cloning principle called spacetime replication of quantum information. We introduce continuous-variable spacetime-replication protocols, expressed in a Gaussian-state basis, that build on novel homologically constructed continuous-variable quantum error correcting codes. Compared to ...

81P45 ; 81P68

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research School;Mathematical Physics

Quantum optical systems provides one of the best physical settings to engineer quantum many-body systems of atoms and photons, which can be controlled and measured on the level of single quanta. In this course we will provide an introduction to quantum optics from the perspective of control and measurement, and in light of possible applications including quantum computing and quantum communication.
The first part of the course will introduce the basic quantum optical systems and concepts as ’closed’ (i.e. isolated) quantum systems. We start with laser driven two-level atoms, the Jaynes-Cummings model of Cavity Quantum Electro-dynamics, and illustrate with the example of trapped ions control of the quantum motion of atoms via laser light. This will lead us to the model system of an ion trap quantum computer where we employ control ideas to design quantum gates.
In the second part of the course we will consider open quantum optical systems. Here the system of interest is coupled to a bosonic bath or environment (e.g. vacuum modes of the radiation field), providing damping and decoherence. We will develop the theory for the example of a radiatively damped two-level atom, and derive the corresponding master equation, and discuss its solution and physical interpretation. On a more advanced level, and as link to the mathematical literature, we establish briefly the connection to topics like continuous measurement theory (of photon counting), the Quantum Stochastic Schrödinger Equation, and quantum trajectories (here as as time evolution of a radiatively damped atom conditional to observing a given photon count trajectory). As an example of the application of the formalism we discuss quantum state transfer in a quantum optical network.
Parts of this video related to ongoing unpublished research have been cut off.
Quantum optical systems provides one of the best physical settings to engineer quantum many-body systems of atoms and photons, which can be controlled and measured on the level of single quanta. In this course we will provide an introduction to quantum optics from the perspective of control and measurement, and in light of possible applications including quantum computing and quantum communication.
The first part of the course will introduce the ...

81P68 ; 81V80

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research School;Mathematical Physics

Quantum optical systems provides one of the best physical settings to engineer quantum many-body systems of atoms and photons, which can be controlled and measured on the level of single quanta. In this course we will provide an introduction to quantum optics from the perspective of control and measurement, and in light of possible applications including quantum computing and quantum communication.
The first part of the course will introduce the basic quantum optical systems and concepts as ’closed’ (i.e. isolated) quantum systems. We start with laser driven two-level atoms, the Jaynes-Cummings model of Cavity Quantum Electro-dynamics, and illustrate with the example of trapped ions control of the quantum motion of atoms via laser light. This will lead us to the model system of an ion trap quantum computer where we employ control ideas to design quantum gates.
In the second part of the course we will consider open quantum optical systems. Here the system of interest is coupled to a bosonic bath or environment (e.g. vacuum modes of the radiation field), providing damping and decoherence. We will develop the theory for the example of a radiatively damped two-level atom, and derive the corresponding master equation, and discuss its solution and physical interpretation. On a more advanced level, and as link to the mathematical literature, we establish briefly the connection to topics like continuous measurement theory (of photon counting), the Quantum Stochastic Schrödinger Equation, and quantum trajectories (here as as time evolution of a radiatively damped atom conditional to observing a given photon count trajectory). As an example of the application of the formalism we discuss quantum state transfer in a quantum optical network.
Parts of this video related to ongoing unpublished research have been cut off.
Quantum optical systems provides one of the best physical settings to engineer quantum many-body systems of atoms and photons, which can be controlled and measured on the level of single quanta. In this course we will provide an introduction to quantum optics from the perspective of control and measurement, and in light of possible applications including quantum computing and quantum communication.
The first part of the course will introduce the ...

81P68 ; 81V80

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- xii; 250 p.
ISBN 978-1-4704-3582-0

Student mathematical library , 0083

Localisation : Collection 1er étage

courbe elliptique # géométrie algébrique # cryptographie # méthode de Pollard # cryptage asymétrique # cryptage ElGamal

11-01 ; 68-01 ; 11Axx ; 14G50 ; 11T71 ; 68P25 ; 11Y05 ; 11G05 ; 81P68

... Lire [+]

Z