m

F Nous contacter

0

Documents  82C22 | enregistrements trouvés : 38

O

-A +A

P Q

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research School;Partial Differential Equations;Mathematical Physics;Mathematics in Science and Technology

Lecture 1. Collective dynamics and self-organization in biological systems : challenges and some examples.

Lecture 2. The Vicsek model as a paradigm for self-organization : from particles to fluid via kinetic descriptions

Lecture 3. Phase transitions in the Vicsek model : mathematical analyses in the kinetic framework.

35L60 ; 82C22 ; 82B26 ; 82C26 ; 92D50

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research School;Mathematical Physics;Probability and Statistics

Variational formulas for limit shapes of directed last-passage percolation models. Connections of minimizing cocycles of the variational formulas to geodesics, Busemann functions, and stationary percolation.

60K35 ; 60K37 ; 82C22 ; 82C43 ; 82D60

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Mathematical Physics;Probability and Statistics

In this first lecture I will introduce a class of stochastic microscopic models very useful as toy models in non equilibrium statistical mechanics. These are multi-component stochastic particle systems like the exclusion process, the zero range process and the KMP model. I will discuss their scaling limits and the corresponding large deviations principles. Problems of interest are the computation of the current flowing across a system and the understanding of the structure of the stationary non equilibrium states. I will discuss these problems in specific examples and from two different perspectives. The stochastic microscopic and combinatorial point of view and the macroscopic variational approach where the microscopic details of the models are encoded just by the transport coefficients. In this first lecture I will introduce a class of stochastic microscopic models very useful as toy models in non equilibrium statistical mechanics. These are multi-component stochastic particle systems like the exclusion process, the zero range process and the KMP model. I will discuss their scaling limits and the corresponding large deviations principles. Problems of interest are the computation of the current flowing across a system and the ...

82C05 ; 82C22 ; 60F10

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Probability and Statistics

A number of probabilistic systems which can be analyzed in great detail due to certain algebraic structures behind them. These systems include certain directed polymer models, random growth process, interacting particle systems and stochastic PDEs; their analysis yields information on certain universality classes, such as the Kardar-Parisi-Zhang; and these structures include Macdonald processes and quantum integrable systems. We will provide background on this growing area of research and delve into a few of the recent developments.

Kardar-Parisi-Zhang - interacting particle systems - random growth processes - directed polymers - Markov duality - quantum integrable systems - Bethe ansatz - asymmetric simple exclusion process - stochastic partial differential equations
A number of probabilistic systems which can be analyzed in great detail due to certain algebraic structures behind them. These systems include certain directed polymer models, random growth process, interacting particle systems and stochastic PDEs; their analysis yields information on certain universality classes, such as the Kardar-Parisi-Zhang; and these structures include Macdonald processes and quantum integrable systems. We will provide ...

82C22 ; 82B23 ; 60H15

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- x; 343 p.
ISBN 978-3-540-92795-2

Lecture notes in mathematics , 1970

Localisation : Collection 1er étage

modèle de treillis # mécanique statistique # méta-stabilité # transition de phase # géométrie stochastique

82B20 ; 82B26 ; 82C20 ; 60K35 ; 82C26 ; 82C35 ; 82B31 ; 82B41 ; 82B44 ; 82B10 ; 82C22 ; 60K05 ; 82B05 ; 82C05 ; 82-06 ; 00B25

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 105 p.
ISBN 978-3-540-73704-9

Lecture notes in mathematics , 1916

Localisation : Collection 1er étage

mécanique des fluides # structure anatomique # structure moléculaire # théorie cinétique du gaz # théorie de l'information # mécanique statistique # processus aléatoire # système de particule en intéraction aléatoire

76-02 ; 76P05 ; 82B40 ; 94A15 ; 60K35 ; 82C22

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 141 p.
ISBN 978-0-8218-1993-7

Fields institute communications , 0027

Localisation : Collection 1er étage

probabilité # mécanique statistique # physique statistique # limite hydrodynamique # diffusion # problème à frontière libre # entropie # entropie relative # grande déviation

60K35 ; 82C22

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks

We study the contact process in the regime of small infection rates on scale-free networks evolving by stationary dynamics. A parameter allows us to interpolate between slow (static) and fast (mean-field) network dynamics. For two paradigmatic classes of networks we investigate transitions between phases of fast and slow extinction and in the latter case we analyse the density of infected vertices in the metastable state.
The talk is based on joint work with Emmanuel Jacob (ENS Lyon) and Amitai Linker (Universidad de Chile).
We study the contact process in the regime of small infection rates on scale-free networks evolving by stationary dynamics. A parameter allows us to interpolate between slow (static) and fast (mean-field) network dynamics. For two paradigmatic classes of networks we investigate transitions between phases of fast and slow extinction and in the latter case we analyse the density of infected vertices in the metastable state.
The talk is based on ...

05C82 ; 82C22

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Exposés de recherche

In earlier work (arXiv:1707.04927) the authors obtained formulas for the probability in the asymmetric simple exclusion process that at time t a particle is at site x and is the beginning of a block of L consecutive particles. Here we consider asymptotics. Specifically, for the KPZ regime with step initial condition, we determine the conditional probability (asymptotically as $t\rightarrow\infty$) that a particle is the beginning of an L-block, given that it is at site x at time t. Using duality between occupied and unoccupied sites we obtain the analogous result for a gap of G unoccupied sites between the particle at x and the next one. In earlier work (arXiv:1707.04927) the authors obtained formulas for the probability in the asymmetric simple exclusion process that at time t a particle is at site x and is the beginning of a block of L consecutive particles. Here we consider asymptotics. Specifically, for the KPZ regime with step initial condition, we determine the conditional probability (asymptotically as $t\rightarrow\infty$) that a particle is the beginning of an L-block, ...

82C22 ; 82C23 ; 82C20

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Exposés de recherche

We study a general class of log-gas ensembles on a quadratic lattice. Using a variational principle we prove that the corresponding empirical measures satisfy a law of large numbers and that their global fluctuations are Gaussian with a universal covariance.
We apply our general results to analyze the asymptotic behavior of a q-boxed plane partition model introduced by Borodin, Gorin and Rains. In particular, we show that the global fluctuations of the height function on a fixed slice are described by a one-dimensional section of a pullback of the two-dimensional Gaussian free field.
Our approach is based on a q-analogue of the Schwinger-Dyson (or loop) equations, which originate in the work of Nekrasov and his collaborators, and extends the methods developed by Borodin, Gorin and Guionnet to a quadratic lattice.
Based on joint work with Evgeni Dimitrov
We study a general class of log-gas ensembles on a quadratic lattice. Using a variational principle we prove that the corresponding empirical measures satisfy a law of large numbers and that their global fluctuations are Gaussian with a universal covariance.
We apply our general results to analyze the asymptotic behavior of a q-boxed plane partition model introduced by Borodin, Gorin and Rains. In particular, we show that the global fluctuations ...

60K35 ; 82C22

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks

82C21 ; 82C22 ; 65T50 ; 65L07 ; 74G15

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Mathematical Physics;Probability and Statistics

We consider periodic TASEP with periodic step initial condition, and evaluate the joint distribution of the locations of m particles. For arbitrary indices and times, we find a formula for the multi-time, multi-space joint distribution in terms of an integral of a Fredholm determinant. We then discuss the large time limit in the so-called relaxation scale. The one-point distributions for other initial conditions are also going to discussed.
Based on joint work with Zhipeng Liu (NYU).
We consider periodic TASEP with periodic step initial condition, and evaluate the joint distribution of the locations of m particles. For arbitrary indices and times, we find a formula for the multi-time, multi-space joint distribution in terms of an integral of a Fredholm determinant. We then discuss the large time limit in the so-called relaxation scale. The one-point distributions for other initial conditions are also going to discus...

82C22 ; 60K35 ; 82C43

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research School;Partial Differential Equations;Mathematical Physics;Mathematics in Science and Technology

Lecture 1. Collective dynamics and self-organization in biological systems : challenges and some examples.

Lecture 2. The Vicsek model as a paradigm for self-organization : from particles to fluid via kinetic descriptions

Lecture 3. Phase transitions in the Vicsek model : mathematical analyses in the kinetic framework.

35L60 ; 82C22 ; 82B26 ; 82C26 ; 92D50

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research School;Partial Differential Equations;Mathematical Physics;Mathematics in Science and Technology

Lecture 1. Collective dynamics and self-organization in biological systems : challenges and some examples.

Lecture 2. The Vicsek model as a paradigm for self-organization : from particles to fluid via kinetic descriptions

Lecture 3. Phase transitions in the Vicsek model : mathematical analyses in the kinetic framework.

35L60 ; 82C22 ; 82B26 ; 82C26 ; 92D50

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research School;Mathematical Physics

In these three lectures steady states and dynamical properties of nonequilibrium systems will be discussed.
Systems driven out of thermal equilibrium often reach a steady state which under generic conditions exhibits long-range correlations. This is very different from systems in thermal equilibrium where long-range correlations develop only at phase transition points. In some cases these correlations even lead to long-range order in d=1 dimension, of the type occurring in traffic jams. Simple examples of such correlations induced in the steady state of driven systems will be presented and discussed. Close correspondence of these nonequilibrium steady states to electrostatic potentials induces by charge distribution will be pointed out.
Another class which will be discussed is that of systems with boundary drive, such as in heat conduction problems, where anomalous heat conduction takes place in low dimensions. In addition some similarities between driven systems and equilibrium systems with long-range interactions will be elucidated.
In these three lectures steady states and dynamical properties of nonequilibrium systems will be discussed.
Systems driven out of thermal equilibrium often reach a steady state which under generic conditions exhibits long-range correlations. This is very different from systems in thermal equilibrium where long-range correlations develop only at phase transition points. In some cases these correlations even lead to long-range order in d=1 ...

82C26 ; 82C22

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research School;Mathematical Physics

In these three lectures steady states and dynamical properties of nonequilibrium systems will be discussed.
Systems driven out of thermal equilibrium often reach a steady state which under generic conditions exhibits long-range correlations. This is very different from systems in thermal equilibrium where long-range correlations develop only at phase transition points. In some cases these correlations even lead to long-range order in d=1 dimension, of the type occurring in traffic jams. Simple examples of such correlations induced in the steady state of driven systems will be presented and discussed. Close correspondence of these nonequilibrium steady states to electrostatic potentials induces by charge distribution will be pointed out.
Another class which will be discussed is that of systems with boundary drive, such as in heat conduction problems, where anomalous heat conduction takes place in low dimensions. In addition some similarities between driven systems and equilibrium systems with long-range interactions will be elucidated.
In these three lectures steady states and dynamical properties of nonequilibrium systems will be discussed.
Systems driven out of thermal equilibrium often reach a steady state which under generic conditions exhibits long-range correlations. This is very different from systems in thermal equilibrium where long-range correlations develop only at phase transition points. In some cases these correlations even lead to long-range order in d=1 ...

82C26 ; 82C22

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research School;Mathematical Physics;Probability and Statistics

In these lectures I will present the recent construction of the KPZ fixed point, which is the scaling invariant Markov process conjectured to arise as the universal scaling limit of all models in the KPZ universality class, and which contains all the fluctuation behavior seen in the class.
In the first part of the minicourse I will describe this process and how it arises from a particular microscopic model, the totally asymmetric exclusion process (TASEP). Then I will present a Fredholm determinant formula for its distribution (at a fixed time) and show how all the main properties of the fixed point (including the Markov property, space and time regularity, symmetries and scaling invariance, and variational formulas) can be derived from the formula and the construction, and also how the formula reproduces known self-similar solutions such as the $Airy_1andAiry_2$ processes.
The second part of the course will be devoted to explaining how the KPZ fixed point can be computed starting from TASEP. The method is based on solving, for any initial condition, the biorthogonal ensemble representation for TASEP found by Sasamoto '05 and Borodin-Ferrari-Prähofer-Sasamoto '07. The resulting kernel involves transition probabilities of a random walk forced to hit a curve defined by the initial data, and in the KPZ 1:2:3 scaling limit the formula leads in a transparent way to a Fredholm determinant formula given in terms of analogous kernels based on Brownian motion.
Based on joint work with K. Matetski and J. Quastel.
In these lectures I will present the recent construction of the KPZ fixed point, which is the scaling invariant Markov process conjectured to arise as the universal scaling limit of all models in the KPZ universality class, and which contains all the fluctuation behavior seen in the class.
In the first part of the minicourse I will describe this process and how it arises from a particular microscopic model, the totally asymmetric exclusion ...

82C31 ; 82C23 ; 82D60 ; 82C22 ; 82C43

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research School;Mathematical Physics;Probability and Statistics

In these lectures I will present the recent construction of the KPZ fixed point, which is the scaling invariant Markov process conjectured to arise as the universal scaling limit of all models in the KPZ universality class, and which contains all the fluctuation behavior seen in the class.
In the first part of the minicourse I will describe this process and how it arises from a particular microscopic model, the totally asymmetric exclusion process (TASEP). Then I will present a Fredholm determinant formula for its distribution (at a fixed time) and show how all the main properties of the fixed point (including the Markov property, space and time regularity, symmetries and scaling invariance, and variational formulas) can be derived from the formula and the construction, and also how the formula reproduces known self-similar solutions such as the $Airy_1andAiry_2$ processes.
The second part of the course will be devoted to explaining how the KPZ fixed point can be computed starting from TASEP. The method is based on solving, for any initial condition, the biorthogonal ensemble representation for TASEP found by Sasamoto '05 and Borodin-Ferrari-Prähofer-Sasamoto '07. The resulting kernel involves transition probabilities of a random walk forced to hit a curve defined by the initial data, and in the KPZ 1:2:3 scaling limit the formula leads in a transparent way to a Fredholm determinant formula given in terms of analogous kernels based on Brownian motion.
Based on joint work with K. Matetski and J. Quastel.
In these lectures I will present the recent construction of the KPZ fixed point, which is the scaling invariant Markov process conjectured to arise as the universal scaling limit of all models in the KPZ universality class, and which contains all the fluctuation behavior seen in the class.
In the first part of the minicourse I will describe this process and how it arises from a particular microscopic model, the totally asymmetric exclusion ...

82C31 ; 82C23 ; 82D60 ; 82C22 ; 82C43

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research School;Mathematical Physics;Probability and Statistics

Kardar-Parisi-Zhang fluctuation exponent for the last-passage value of the two-dimensional corner growth model with exponential weights. We sketch the proof of the fluctuation exponent for the stationary corner growth process, and if time permits indicate how the exponent is derived for the percolation process with i.i.d. weights.

60K35 ; 60K37 ; 82C22 ; 82C43 ; 82D60

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research School;Mathematical Physics;Probability and Statistics

Busemann functions for the two-dimensional corner growth model with exponential weights. Derivation of the stationary corner growth model and its use for calculating the limit shape and proving existence of Busemann functions.

60K35 ; 60K37 ; 82C22 ; 82C43 ; 82D60

... Lire [+]

Z