m

F Nous contacter

0

Documents  86A05 | enregistrements trouvés : 28

O

-A +A

P Q

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 134 p.
ISBN 978-963-463-082-1

Localisation : Colloque 1er étage (BUDA)

carte des expositions à l'ozone # classification des séries temporelles hydrogéologiques # simulation de séries temporelles météorologiques # statistique universitaire # impact social # consulation statistique en université # statistique de l'environnement # statistique industrielle # qualité totale # projet TEMPUS

01A73 ; 90A30 ; 90B70 ; 62M10 ; 62-06 ; 62Pxx ; 86A05 ; 86A10 ; 86A60 ; 86Axx

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.


ISBN 978-3-540-61879-9

NATO ASI series : series I : global environmental change , 0048

Localisation : Colloque 1er étage (TENE)

climatologie # environnement # glaciologie # géophysique # méthode de Galikin # pollution # système des EDP non linéaires

35Q80 ; 65N30 ; 86-06 ; 86A05

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.


ISBN 978-0-12-493250-0

Publication of the mathematics research center , 0028

Localisation : Colloque 1er étage (MADI)

approximation # caustique # comportement de l'onde # courant de rivage allongé # enregistrement d'onde # forme d'accumulation de sédiment # génération harmonique # modèle et nature # montée en courant sur la plage # onde d'eau peu profonde # onde sur une plage # rivage # rupture d'onde en eau peu profonde # résonance d'onde # suspension de sédiment # transport de sédiment # zone cotière # équation d'onde d'eau

76B15 ; 86-06 ; 86A05

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools

In these lectures, we will focus on the analysis of oceanographic models. These models involve several small parameters: Mach number, Froude number, Rossby number... We will present a hierarchy of models, and explain how they can formally be derived from one another. We will also present different mathematical tools to address the asymptotic analysis of these models (filtering methods, boundary layer techniques).

86A05 ; 34E13 ; 35Q30 ; 35Q86 ; 35Jxx

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools

In these lectures, we will focus on the analysis of oceanographic models. These models involve several small parameters: Mach number, Froude number, Rossby number... We will present a hierarchy of models, and explain how they can formally be derived from one another. We will also present different mathematical tools to address the asymptotic analysis of these models (filtering methods, boundary layer techniques).

86A05 ; 34E13 ; 35Q30 ; 35Q86 ; 35Jxx

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools

In these lectures, we will focus on the analysis of oceanographic models. These models involve several small parameters: Mach number, Froude number, Rossby number... We will present a hierarchy of models, and explain how they can formally be derived from one another. We will also present different mathematical tools to address the asymptotic analysis of these models (filtering methods, boundary layer techniques).

86A05 ; 34E13 ; 35Q30 ; 35Q86 ; 35Jxx

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools

A good understanding of waves in shallow water, typically in coastal regions, is important for several environmental and societal issues: submersion risks, protection of harbors, erosion, offshore structures, wave energies, etc.

The goal of this serie of lectures is to show how efficient asymptotic models can be derived from the full fluid equations (Navier-Stokes and Euler) and to point out several modelling, numerical and mathematical challenges that one still has to understand in order to describe correctly and efficiently such complex phenomena as wave breaking, overtopping, wave-structures interactions, etc.

I Derivation of several shallow water models

We will show how to derive several shallow water models (nonlinear shallow water equations, Boussinesq and Serre-Green-Naghdi systems) from the free surface Euler equations. We will consider first the case of an idealized configuration where no breaking waves are involved, where the water height does not vanish (no beach!), and where the flow is irrotational - this is the only configuration for which a rigorous justification of the asymptotic models can be justified.

II Brief analysis of these models.

We will briefly comment the mathematical structure of these equations, with a particular focus on the properties that are of interest for their numerical implementation. We will also discuss how these models behave in when the water height vanishes, since they are typically used in such configurations (see the lecture by P. Bonneton).

III Vorticity and turbulent effects.

We will propose a generalization of the derivation of the main shallow water models in the presence of vorticity, and show that the standard irrotational shallow water models must be coupled with an equation for a ”turbulent” tensor. We will also make the link with a modelling of wave breaking proposed by Gavrilyuk and Richard in which wave breaking is taken into account as a source term in this additional equation.

IV Floating objects.

This last section will be devoted to the description of a new approach to describe the interaction of waves in shallow water with floating objects, which leads to several interesting mathematical and numerical issues.
A good understanding of waves in shallow water, typically in coastal regions, is important for several environmental and societal issues: submersion risks, protection of harbors, erosion, offshore structures, wave energies, etc.

The goal of this serie of lectures is to show how efficient asymptotic models can be derived from the full fluid equations (Navier-Stokes and Euler) and to point out several modelling, numerical and mathematical ...

35Q86 ; 86A05 ; 35-XX

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools

A good understanding of waves in shallow water, typically in coastal regions, is important for several environmental and societal issues: submersion risks, protection of harbors, erosion, offshore structures, wave energies, etc.

The goal of this serie of lectures is to show how efficient asymptotic models can be derived from the full fluid equations (Navier-Stokes and Euler) and to point out several modelling, numerical and mathematical challenges that one still has to understand in order to describe correctly and efficiently such complex phenomena as wave breaking, overtopping, wave-structures interactions, etc.

I Derivation of several shallow water models

We will show how to derive several shallow water models (nonlinear shallow water equations, Boussinesq and Serre-Green-Naghdi systems) from the free surface Euler equations. We will consider first the case of an idealized configuration where no breaking waves are involved, where the water height does not vanish (no beach!), and where the flow is irrotational - this is the only configuration for which a rigorous justification of the asymptotic models can be justified.

II Brief analysis of these models.

We will briefly comment the mathematical structure of these equations, with a particular focus on the properties that are of interest for their numerical implementation. We will also discuss how these models behave in when the water height vanishes, since they are typically used in such configurations (see the lecture by P. Bonneton).

III Vorticity and turbulent effects.

We will propose a generalization of the derivation of the main shallow water models in the presence of vorticity, and show that the standard irrotational shallow water models must be coupled with an equation for a ”turbulent” tensor. We will also make the link with a modelling of wave breaking proposed by Gavrilyuk and Richard in which wave breaking is taken into account as a source term in this additional equation.

IV Floating objects.

This last section will be devoted to the description of a new approach to describe the interaction of waves in shallow water with floating objects, which leads to several interesting mathematical and numerical issues.
A good understanding of waves in shallow water, typically in coastal regions, is important for several environmental and societal issues: submersion risks, protection of harbors, erosion, offshore structures, wave energies, etc.

The goal of this serie of lectures is to show how efficient asymptotic models can be derived from the full fluid equations (Navier-Stokes and Euler) and to point out several modelling, numerical and mathematical ...

35Q86 ; 86A05 ; 35-XX

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools

A good understanding of waves in shallow water, typically in coastal regions, is important for several environmental and societal issues: submersion risks, protection of harbors, erosion, offshore structures, wave energies, etc. The goal of this serie of lectures is to show how efficient asymptotic models can be derived from the full fluid equations (Navier-Stokes and Euler) and to point out several modelling, numerical and mathematical challenges that one still has to understand in order to describe correctly and efficiently such complex phenomena as wave breaking, overtopping, wave-structures interactions, etc.

I Derivation of several shallow water models

We will show how to derive several shallow water models (nonlinear shallow water equations, Boussinesq and Serre-Green-Naghdi systems) from the free surface Euler equations. We will consider first the case of an idealized configuration where no breaking waves are involved, where the water height does not vanish (no beach!), and where the flow is irrotational - this is the only configuration for which a rigorous justification of the asymptotic models can be justified.

II Brief analysis of these models.

We will briefly comment the mathematical structure of these equations, with a particular focus on the properties that are of interest for their numerical implementation. We will also discuss how these models behave in when the water height vanishes, since they are typically used in such configurations (see the lecture by P. Bonneton).

III Vorticity and turbulent effects

We will propose a generalization of the derivation of the main shallow water models in the presence of vorticity, and show that the standard irrotational shallow water models must be coupled with an equation for a ”turbulent” tensor. We will also make the link with a modelling of wave breaking proposed by Gavrilyuk and Richard in which wave breaking is taken into account as a source term in this additional equation.

IV Floating objects.

This last section will be devoted to the description of a new approach to describe the interaction of waves in shallow water with floating objects, which leads to several interesting mathematical and numerical issues.
A good understanding of waves in shallow water, typically in coastal regions, is important for several environmental and societal issues: submersion risks, protection of harbors, erosion, offshore structures, wave energies, etc. The goal of this serie of lectures is to show how efficient asymptotic models can be derived from the full fluid equations (Navier-Stokes and Euler) and to point out several modelling, numerical and mathematical ...

35Q86 ; 86A05 ; 35-XX

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools

86A05 ; 35Q86

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools

86A05 ; 35Q86

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools

86A05 ; 35Q86

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools;Mathematics in Science and Technology;Probability and Statistics

62P12 ; 62M20 ; 86A05 ; 86A32 ; 93E10

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- xvi; 360 p.
ISBN 978-1-107-66966-6

Cambridge monographs on mechanics

Localisation : Ouvrage RdC (BUHL)

dynamique des fluides # circulation atmosphérique # onde non linéaire # mouvement ondulatoire

86-02 ; 76-02 ; 86A05 ; 76A02 ; 01A75

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- xiii; 463 p.
ISBN 978-1-10700-158-9

Localisation : Ouvrage RdC (BABA)

vague # vague déferlante # mécanique des fluides # océanographie # méthode de simulation # géophysique # processus aléatoire

86-02 ; 86A05

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- xv; 662 p.
ISBN 978-0-12-283522-3

International geophysics series , 0030

Localisation : Ouvrage RdC (GILL)

interaction mer - atmosphere

86A05 ; 86A10 ; 86A17

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 245 p.
ISBN 978-3-540-35743-8

Lecture Notes of the Unione Matematica Italiana , 0001

Localisation : Ouvrage RdC (TART)

EDP # équations Stokes et Navier-Stokes # fluides visqueux incompressible # fluide en rotation # géophysique # océanographie

35-01 ; 35Q30 ; 76D03 ; 76D05 ; 76U05 ; 86A05

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 234 p.
ISBN 978-0-8218-3693-4

Mathematical surveys and monographs , 0119

Localisation : Collection 1er étage

mécanique des fluides # dynamique des fluides # équation de Navier-Stokes # couche limite # flux # champs vectoriel # météorologie # EDP # stabilité # variété # géophysique # flux incompressible # variété compacte # équation de Euler

35Q30 ; 35Q35 ; 76D05 ; 76D10 ; 37C10 ; 37C75 ; 86A10 ; 86A05 ; 46E25 ; 20C20

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 234 p.
ISBN 978-0-8218-2954-7

Courant lecture notes , 0009

Localisation : Ouvrage RdC (MAJD)

mécanique des fluides # géophysique # fluide en notation # EDP # onde # hydrologie # océanographie # modélisation numérique # équation de Boussinesq

76U05 ; 35Q35 ; 76B03 ; 76B15 ; 76D33 ; 86A05 ; 86A10

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 350 p.
ISBN 978-84-7496-252-9

Grupo de analisis matematico aplicado , 0005

Localisation : Ouvrage RdC (CAST)

dynamique des fluides # océanographie # modème mathématique # modélisation # équation du transport # analyse mathématique # modèle de Shullow-Water # méthode du gradient conjugué # modèle de Navier-Stokes # problème continu # problème discret # analyse numérique # algorithme

76SXX ; 76D05 ; 76B10 ; 86A05 ; 76Rxx ; 37N10

... Lire [+]

Z