m

Documents  86A05 | enregistrements trouvés : 28

O

-A +A

P Q

Déposez votre fichier ici pour le déplacer vers cet enregistrement.


ISBN 978-0-12-493250-0

Publication of the mathematics research center , 0028

Localisation : Colloque 1er étage (MADI)

approximation # caustique # comportement de l'onde # courant de rivage allongé # enregistrement d'onde # forme d'accumulation de sédiment # génération harmonique # modèle et nature # montée en courant sur la plage # onde d'eau peu profonde # onde sur une plage # rivage # rupture d'onde en eau peu profonde # résonance d'onde # suspension de sédiment # transport de sédiment # zone cotière # équation d'onde d'eau

76B15 ; 86-06 ; 86A05

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.


ISBN 978-3-540-61879-9

NATO ASI series : series I : global environmental change , 0048

Localisation : Colloque 1er étage (TENE)

climatologie # environnement # glaciologie # géophysique # méthode de Galikin # pollution # système des EDP non linéaires

35Q80 ; 65N30 ; 86-06 ; 86A05

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 134 p.
ISBN 978-963-463-082-1

Localisation : Colloque 1er étage (BUDA)

carte des expositions à l'ozone # classification des séries temporelles hydrogéologiques # simulation de séries temporelles météorologiques # statistique universitaire # impact social # consulation statistique en université # statistique de l'environnement # statistique industrielle # qualité totale # projet TEMPUS

01A73 ; 90A30 ; 90B70 ; 62M10 ; 62-06 ; 62Pxx ; 86A05 ; 86A10 ; 86A60 ; 86Axx

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools

A good understanding of waves in shallow water, typically in coastal regions, is important for several environmental and societal issues: submersion risks, protection of harbors, erosion, offshore structures, wave energies, etc.

The goal of this serie of lectures is to show how efficient asymptotic models can be derived from the full fluid equations (Navier-Stokes and Euler) and to point out several modelling, numerical and mathematical challenges that one still has to understand in order to describe correctly and efficiently such complex phenomena as wave breaking, overtopping, wave-structures interactions, etc.

I Derivation of several shallow water models

We will show how to derive several shallow water models (nonlinear shallow water equations, Boussinesq and Serre-Green-Naghdi systems) from the free surface Euler equations. We will consider first the case of an idealized configuration where no breaking waves are involved, where the water height does not vanish (no beach!), and where the flow is irrotational - this is the only configuration for which a rigorous justification of the asymptotic models can be justified.

II Brief analysis of these models.

We will briefly comment the mathematical structure of these equations, with a particular focus on the properties that are of interest for their numerical implementation. We will also discuss how these models behave in when the water height vanishes, since they are typically used in such configurations (see the lecture by P. Bonneton).

III Vorticity and turbulent effects.

We will propose a generalization of the derivation of the main shallow water models in the presence of vorticity, and show that the standard irrotational shallow water models must be coupled with an equation for a ”turbulent” tensor. We will also make the link with a modelling of wave breaking proposed by Gavrilyuk and Richard in which wave breaking is taken into account as a source term in this additional equation.

IV Floating objects.

This last section will be devoted to the description of a new approach to describe the interaction of waves in shallow water with floating objects, which leads to several interesting mathematical and numerical issues.
A good understanding of waves in shallow water, typically in coastal regions, is important for several environmental and societal issues: submersion risks, protection of harbors, erosion, offshore structures, wave energies, etc.

The goal of this serie of lectures is to show how efficient asymptotic models can be derived from the full fluid equations (Navier-Stokes and Euler) and to point out several modelling, numerical and mathematical ...

35Q86 ; 86A05 ; 35-XX

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools

In these lectures, we will focus on the analysis of oceanographic models. These models involve several small parameters: Mach number, Froude number, Rossby number... We will present a hierarchy of models, and explain how they can formally be derived from one another. We will also present different mathematical tools to address the asymptotic analysis of these models (filtering methods, boundary layer techniques).

86A05 ; 34E13 ; 35Q30 ; 35Q86 ; 35Jxx

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools

A good understanding of waves in shallow water, typically in coastal regions, is important for several environmental and societal issues: submersion risks, protection of harbors, erosion, offshore structures, wave energies, etc.

The goal of this serie of lectures is to show how efficient asymptotic models can be derived from the full fluid equations (Navier-Stokes and Euler) and to point out several modelling, numerical and mathematical challenges that one still has to understand in order to describe correctly and efficiently such complex phenomena as wave breaking, overtopping, wave-structures interactions, etc.

I Derivation of several shallow water models

We will show how to derive several shallow water models (nonlinear shallow water equations, Boussinesq and Serre-Green-Naghdi systems) from the free surface Euler equations. We will consider first the case of an idealized configuration where no breaking waves are involved, where the water height does not vanish (no beach!), and where the flow is irrotational - this is the only configuration for which a rigorous justification of the asymptotic models can be justified.

II Brief analysis of these models.

We will briefly comment the mathematical structure of these equations, with a particular focus on the properties that are of interest for their numerical implementation. We will also discuss how these models behave in when the water height vanishes, since they are typically used in such configurations (see the lecture by P. Bonneton).

III Vorticity and turbulent effects.

We will propose a generalization of the derivation of the main shallow water models in the presence of vorticity, and show that the standard irrotational shallow water models must be coupled with an equation for a ”turbulent” tensor. We will also make the link with a modelling of wave breaking proposed by Gavrilyuk and Richard in which wave breaking is taken into account as a source term in this additional equation.

IV Floating objects.

This last section will be devoted to the description of a new approach to describe the interaction of waves in shallow water with floating objects, which leads to several interesting mathematical and numerical issues.
A good understanding of waves in shallow water, typically in coastal regions, is important for several environmental and societal issues: submersion risks, protection of harbors, erosion, offshore structures, wave energies, etc.

The goal of this serie of lectures is to show how efficient asymptotic models can be derived from the full fluid equations (Navier-Stokes and Euler) and to point out several modelling, numerical and mathematical ...

35Q86 ; 86A05 ; 35-XX

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools

In these lectures, we will focus on the analysis of oceanographic models. These models involve several small parameters: Mach number, Froude number, Rossby number... We will present a hierarchy of models, and explain how they can formally be derived from one another. We will also present different mathematical tools to address the asymptotic analysis of these models (filtering methods, boundary layer techniques).

86A05 ; 34E13 ; 35Q30 ; 35Q86 ; 35Jxx

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools

86A05 ; 35Q86

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools

A good understanding of waves in shallow water, typically in coastal regions, is important for several environmental and societal issues: submersion risks, protection of harbors, erosion, offshore structures, wave energies, etc. The goal of this serie of lectures is to show how efficient asymptotic models can be derived from the full fluid equations (Navier-Stokes and Euler) and to point out several modelling, numerical and mathematical challenges that one still has to understand in order to describe correctly and efficiently such complex phenomena as wave breaking, overtopping, wave-structures interactions, etc.

I Derivation of several shallow water models

We will show how to derive several shallow water models (nonlinear shallow water equations, Boussinesq and Serre-Green-Naghdi systems) from the free surface Euler equations. We will consider first the case of an idealized configuration where no breaking waves are involved, where the water height does not vanish (no beach!), and where the flow is irrotational - this is the only configuration for which a rigorous justification of the asymptotic models can be justified.

II Brief analysis of these models.

We will briefly comment the mathematical structure of these equations, with a particular focus on the properties that are of interest for their numerical implementation. We will also discuss how these models behave in when the water height vanishes, since they are typically used in such configurations (see the lecture by P. Bonneton).

III Vorticity and turbulent effects

We will propose a generalization of the derivation of the main shallow water models in the presence of vorticity, and show that the standard irrotational shallow water models must be coupled with an equation for a ”turbulent” tensor. We will also make the link with a modelling of wave breaking proposed by Gavrilyuk and Richard in which wave breaking is taken into account as a source term in this additional equation.

IV Floating objects.

This last section will be devoted to the description of a new approach to describe the interaction of waves in shallow water with floating objects, which leads to several interesting mathematical and numerical issues.
A good understanding of waves in shallow water, typically in coastal regions, is important for several environmental and societal issues: submersion risks, protection of harbors, erosion, offshore structures, wave energies, etc. The goal of this serie of lectures is to show how efficient asymptotic models can be derived from the full fluid equations (Navier-Stokes and Euler) and to point out several modelling, numerical and mathematical ...

35Q86 ; 86A05 ; 35-XX

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools

In these lectures, we will focus on the analysis of oceanographic models. These models involve several small parameters: Mach number, Froude number, Rossby number... We will present a hierarchy of models, and explain how they can formally be derived from one another. We will also present different mathematical tools to address the asymptotic analysis of these models (filtering methods, boundary layer techniques).

86A05 ; 34E13 ; 35Q30 ; 35Q86 ; 35Jxx

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools

86A05 ; 35Q86

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools

86A05 ; 35Q86

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools;Mathematics in Science and Technology;Probability and Statistics

62P12 ; 62M20 ; 86A05 ; 86A32 ; 93E10

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 265 p.
ISBN 978-0-8218-3054-3

American mathematical society translations series 2 , 0104

Localisation : Collection 1er étage

01A70 ; 30Axx ; 73Dxx ; 76B15 ; 86A05

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 208 p.
ISBN 978-3-540-09402-9

Springer series in optical sciences , 0012

Localisation : Ouvrage RdC (Mont)

algorithme de Monté Carlo # atmosphère et océan # atmosphère sphèrique # estimation de la fonction de corrélation # fluctuation de lumière forte # milieu turbulent # méthode de Monté Carlo # optique atmosphérique # problème direct et inverse # problème non stationnaire # propagation de faisceau étroit # résolution de l'équation intégrale de transfert # théorie de transfert radiatif # équation de transfert

76Fxx ; 78A10 ; 85A25 ; 86A05 ; 86A10

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Mathematische vorlesungen an der universität Göttingen , 0004

Localisation : Réserve

fonction de Fuchs # intégrale de Abel # mathématique pure # mouvement des flots de la mer # mécanique nouvelle # nombre transfini # onde de Hertz # physique mathématique # équation de Fredholm # équation intégrale

45-03 ; 45B05 ; 70H40 ; 78A55 ; 86A05

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 182 p.
ISBN 978-2-8031-0146-7

Publication de la classe des sciences Série 3 , 0002

Localisation : Ouvrage RdC (PIRO)

aspect numérique dans le cas unidimensionnel # barrage de la Vesdre à Eupen # bassin du blanc gravier # cas quasi- tridimensionnel # généralisation aux terrains naturels # modélisation d'écoulement transitoire en cours d'eau # modélisation de crue # modélisation du ruissellement hydrologique # propagation sur fond sec ou humide # ressaut # écoulement consécutif à une rupture de barrage

73M25 ; 76-05 ; 76E20 ; 86A05

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 377 p.
ISBN 978-0-387-94212-4

Localisation : Ouvrage RdC (SUN)

hydrodynamique # hydrolique des nappes souterraines # hydrology # modèlisation mathématique # pollution # écologie # équation de diffusion et convection # équation de la dispertion

35Q35 ; 76Q05 ; 76Rxx ; 76S05 ; 86A05

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 350 p.
ISBN 978-84-7496-252-9

Grupo de analisis matematico aplicado , 0005

Localisation : Ouvrage RdC (CAST)

dynamique des fluides # océanographie # modème mathématique # modélisation # équation du transport # analyse mathématique # modèle de Shullow-Water # méthode du gradient conjugué # modèle de Navier-Stokes # problème continu # problème discret # analyse numérique # algorithme

76SXX ; 76D05 ; 76B10 ; 86A05 ; 76Rxx ; 37N10

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 234 p.
ISBN 978-0-8218-2954-7

Courant lecture notes , 0009

Localisation : Ouvrage RdC (MAJD)

mécanique des fluides # géophysique # fluide en notation # EDP # onde # hydrologie # océanographie # modélisation numérique # équation de Boussinesq

76U05 ; 35Q35 ; 76B03 ; 76B15 ; 76D33 ; 86A05 ; 86A10

... Lire [+]

Z