m

F Nous contacter

0

Documents  Ishikawa, Goo | enregistrements trouvés : 2

O
     

-A +A

P Q

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 583 p.
ISBN 978-4-931469-32-7

Advanced studies in pure mathematics , 0043

Localisation : Collection 1er étage

plusieures variables complexes # analyse globale # géométrie algébrique # singularités # intégration motivique # polynôme de Thom # singularité lagrangienne # géométrie différentielle

32-06 ; 58-06 ; 14-06 ; 00B25

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Algebraic and Complex Geometry

Given a space curve, the surface ruled by tangent lines to the curve is called the tangent surface or the tangent developable to the curve. Tangent surfaces were studied by many mathemati- cians, Euler, Monge, Cayley, etc. The tangent surface has necessarily singularities along the original curve (curve of regression). The singularities are classified by Cleave, Mond, Arnold, Shcherbak and so on. In this talk we provide several generalisations of the known classification results. In particular we consider, in one direction, tangent surfaces to possibly singular curves in an ambient space of any dimension with any affine connection. In another direction, we study "abnormal" tangent surfaces to integral curves of a Cartan distribution in five space. The exposition will be performed via a generalised notion of "frontal". Given a space curve, the surface ruled by tangent lines to the curve is called the tangent surface or the tangent developable to the curve. Tangent surfaces were studied by many mathemati- cians, Euler, Monge, Cayley, etc. The tangent surface has necessarily singularities along the original curve (curve of regression). The singularities are classified by Cleave, Mond, Arnold, Shcherbak and so on. In this talk we provide several generalisations ...

53A20 ; 57R45 ; 58K40

... Lire [+]

Z