m

F Nous contacter

0

Documents  Ueltschi, Daniel | enregistrements trouvés : 6

O
     

-A +A

P Q

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- x; 202 p.
ISBN 978-0-8218-5247-7

Contemporary mathematics , 0529

Localisation : Collection 1er étage

entropie quantique # mécanique quantique # stabilité de la matière # inégalités analytiques # théorie de l'information quantique # limite de Shandrasekhar # masse stellaire

15A90 ; 47A63 ; 81Q10 ; 81Q15 ; 81V17 ; 82C10 ; 82C20 ; 94A40 ; 81-06 ; 00B25

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- viii; 224 p.
ISBN 978-0-8218-6898-0

Contemporary mathematics , 0552

Localisation : Collection 1er étage

entropie quantique # inégalités isopérimétrique # laplacien # équation de Kac Master

35Q20 ; 60B12 ; 60K35 ; 81Q10 ; 82B10 ; 82B44 ; 82C10 ; 82C40 ; 35P15 ; 82-06

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Mathematical Physics

These lectures will be an introduction to the quantum Heisenberg model and other related systems. We will review the Hilbert space, the spin operators, the Hamiltonian, and the free energy. We will restrict ourselves to equilibrium systems. The main questions deal with the nature of equilibrium states and the phase transitions. We will review some of the main results such as the Mermin-Wagner theorem and the method of reflection positivity, that allows to prove the existence of phase transitions. Finally, we will discuss certain probabilistic representations and their consequences. These lectures will be an introduction to the quantum Heisenberg model and other related systems. We will review the Hilbert space, the spin operators, the Hamiltonian, and the free energy. We will restrict ourselves to equilibrium systems. The main questions deal with the nature of equilibrium states and the phase transitions. We will review some of the main results such as the Mermin-Wagner theorem and the method of reflection positivity, that ...

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Mathematical Physics

These lectures will be an introduction to the quantum Heisenberg model and other related systems. We will review the Hilbert space, the spin operators, the Hamiltonian, and the free energy. We will restrict ourselves to equilibrium systems. The main questions deal with the nature of equilibrium states and the phase transitions. We will review some of the main results such as the Mermin-Wagner theorem and the method of reflection positivity, that allows to prove the existence of phase transitions. Finally, we will discuss certain probabilistic representations and their consequences. These lectures will be an introduction to the quantum Heisenberg model and other related systems. We will review the Hilbert space, the spin operators, the Hamiltonian, and the free energy. We will restrict ourselves to equilibrium systems. The main questions deal with the nature of equilibrium states and the phase transitions. We will review some of the main results such as the Mermin-Wagner theorem and the method of reflection positivity, that ...

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Mathematical Physics

These lectures will be an introduction to the quantum Heisenberg model and other related systems. We will review the Hilbert space, the spin operators, the Hamiltonian, and the free energy. We will restrict ourselves to equilibrium systems. The main questions deal with the nature of equilibrium states and the phase transitions. We will review some of the main results such as the Mermin-Wagner theorem and the method of reflection positivity, that allows to prove the existence of phase transitions. Finally, we will discuss certain probabilistic representations and their consequences. These lectures will be an introduction to the quantum Heisenberg model and other related systems. We will review the Hilbert space, the spin operators, the Hamiltonian, and the free energy. We will restrict ourselves to equilibrium systems. The main questions deal with the nature of equilibrium states and the phase transitions. We will review some of the main results such as the Mermin-Wagner theorem and the method of reflection positivity, that ...

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Mathematical Physics

These lectures will be an introduction to the quantum Heisenberg model and other related systems. We will review the Hilbert space, the spin operators, the Hamiltonian, and the free energy. We will restrict ourselves to equilibrium systems. The main questions deal with the nature of equilibrium states and the phase transitions. We will review some of the main results such as the Mermin-Wagner theorem and the method of reflection positivity, that allows to prove the existence of phase transitions. Finally, we will discuss certain probabilistic representations and their consequences. These lectures will be an introduction to the quantum Heisenberg model and other related systems. We will review the Hilbert space, the spin operators, the Hamiltonian, and the free energy. We will restrict ourselves to equilibrium systems. The main questions deal with the nature of equilibrium states and the phase transitions. We will review some of the main results such as the Mermin-Wagner theorem and the method of reflection positivity, that ...

... Lire [+]

Z