Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
- x, 201 p.
ISBN 978-3-540-79813-2
Lecture notes in mathematics , 1947
Localisation : Collection 1er étage
courbe algébrique # invariant Gromov-Witten # cohomologie quantique # homologie Floer symplectique # théorie des cordes # supercorde # théorie topologique des champs quantiques
14H10 ; 14H81 ; 14N35 ; 53D40 ; 81T30 ; 81T45
... Lire [+]
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
- 180 p.
ISBN 978-83-86806-38-6
Banach center publications , 0114
Localisation : Périodique 1er étage
topologie # théorie quantique # théorie topologique des champs # courbe spectrale de Hitchin # gerbe en faisceaux
81-06 ; 81T45 ; 81T40 ; 14H81 ; 00B25
... Lire [+]
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Research talks;Algebraic and Complex Geometry
In 2007, Fan, Jarvis, and Ruan constructed an analogue of the Gromov-Witten (GW) theory of hypersurfaces in weighted projective spaces. The new theory is attached to quasi-homogeneous polynomial singularities and is usually called Fan-Jarvis-Ruan-Witten theory (FJRW). It is part of the general picture of Witten, where GW and FJRW theories arise as two distinct GIT quotients of the same model. I will first explain this idea under the light of mirror symmetry. Then I will present FJRW theory and the geometric problem it illustrates. In particular, I will highlight a geometric property called concavity. For now, it is a necessary condition for explicit results on GW theory of hypersurfaces. But on the FJRW side, the situation has recently changed and I will describe my method based on Koszul cohomology to overcome this difficulty. As a consequence, I obtain a mirror symmetry theorem without concavity.
In 2007, Fan, Jarvis, and Ruan constructed an analogue of the Gromov-Witten (GW) theory of hypersurfaces in weighted projective spaces. The new theory is attached to quasi-homogeneous polynomial singularities and is usually called Fan-Jarvis-Ruan-Witten theory (FJRW). It is part of the general picture of Witten, where GW and FJRW theories arise as two distinct GIT quotients of the same model. I will first explain this idea under the light of ...
14H70 ; 14H81 ; 14N35 ; 14B05
... Lire [+]