m

F Nous contacter

0

Documents  Carles, Rémi | enregistrements trouvés : 13

O
     

-A +A

P Q

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Partial Differential Equations;Mathematical Physics

In spite of enormous success of the theory of integrable systems, at least three important problems are not resolved yet or are resolved only partly. They are the following:
1. The IST in the case of arbitrary bounded initial data.
2. The statistical description of the systems integrable by the IST. Albeit, the development of the theory of integrable turbulence.
3. Integrability of the deep water equations.
These three problems will be discussed in the talk.
In spite of enormous success of the theory of integrable systems, at least three important problems are not resolved yet or are resolved only partly. They are the following:
1. The IST in the case of arbitrary bounded initial data.
2. The statistical description of the systems integrable by the IST. Albeit, the development of the theory of integrable turbulence.
3. Integrability of the deep water equations.
These three problems will be discussed ...

37K10 ; 35C07 ; 35C08 ; 35Q53 ; 35Q55 ; 76B15 ; 76Fxx

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Partial Differential Equations;Probability and Statistics

We will review in this talk some mathematical results concerning stochastic models used by physicist to describe BEC in the presence of fluctuations (that may arise from inhomogeneities in the confinement parameters), or BEC at finite temperature. The results describe the effect of those fluctuations on the structures - e.g. vortices - which are present in the deterministic model, or the convergence to equilibrium in the models at finite temperature. We will also describe the numerical methods which have been developed for those models in the framework of the ANR project Becasim. These are joint works with Reika Fukuizumi, Arnaud Debussche, and Romain Poncet. We will review in this talk some mathematical results concerning stochastic models used by physicist to describe BEC in the presence of fluctuations (that may arise from inhomogeneities in the confinement parameters), or BEC at finite temperature. The results describe the effect of those fluctuations on the structures - e.g. vortices - which are present in the deterministic model, or the convergence to equilibrium in the models at finite ...

35Q55 ; 60H15 ; 65M06

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Partial Differential Equations

We detail how the new parametrix construction that was developped for the general case allows in turn for a simplified approach for the model case and helps in sharpening both positive and negative results for Strichartz estimates.

35L20 ; 35L05 ; 35B45 ; 58J45 ; 35A18

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Partial Differential Equations;Mathematical Physics

We consider the 1-D Schrödinger system with point vortex-type interactions that was derived by R. Klein, A. Majda and K. Damodaran and by V. Zakharov to modelize the dynamics of N nearly parallel vortex filaments in a 3-D incompressible fluid. We first prove a global in time result and display several classes of solutions. Then we consider the problem of collisions. In particular we establish rigorously the existence of a pair of almost parallel vortex filaments, with opposite circulation, colliding at some point in finite time. These results are joint works with E. Faou and E. Miot. We consider the 1-D Schrödinger system with point vortex-type interactions that was derived by R. Klein, A. Majda and K. Damodaran and by V. Zakharov to modelize the dynamics of N nearly parallel vortex filaments in a 3-D incompressible fluid. We first prove a global in time result and display several classes of solutions. Then we consider the problem of collisions. In particular we establish rigorously the existence of a pair of almost parallel ...

35Q35 ; 76B47

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Partial Differential Equations;Mathematical Physics

This talk is devoted to solitons and wave collapses which can be considered as two alternative scenarios pertaining to the evolution of nonlinear wave systems describing by a certain class of dispersive PDEs (see, for instance, review [1]). For the former case, it suffices that the Hamiltonian be bounded from below (or above), and then the soliton realizing its minimum (or maximum) is Lyapunov stable. The extremum is approached via the radiation of small-amplitude waves, a process absent in systems with finitely many degrees of freedom. The framework of the nonlinear Schrodinger equation, the ZK equation and the three-wave system is used to show how the boundedness of the Hamiltonian H, and hence the stability of the soliton minimizing H can be proved rigorously using the integral estimate method based on the Sobolev embedding theorems. Wave systems with the Hamiltonians unbounded from below must evolve to a collapse, which can be considered as the fall of a particle in an unbounded potential. The radiation of small-amplitude waves promotes collapse in this case.
This work was supported by the Russian Science Foundation (project no. 14-22-00174).
This talk is devoted to solitons and wave collapses which can be considered as two alternative scenarios pertaining to the evolution of nonlinear wave systems describing by a certain class of dispersive PDEs (see, for instance, review [1]). For the former case, it suffices that the Hamiltonian be bounded from below (or above), and then the soliton realizing its minimum (or maximum) is Lyapunov stable. The extremum is approached via the radiation ...

35Q53 ; 35Q55 ; 37K10 ; 37N10 ; 76B15

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Partial Differential Equations

We discuss the 2D Schrödinger equation for periodic potentials with the symmetry of a hexagonal tiling of the plane. We first review joint work with CL Fefferman on the existence of Dirac points, conical singularities in the band structure, and the resulting effective 2D Dirac dynamics of wave-packets. We then focus on periodic potentials which are superpositions of localized potential wells, centered on the vertices of a regular honeycomb structure, corresponding to the single electron model of graphene and its artificial analogues. We prove that for sufficiently deep potentials (strong binding) the lowest two Floquet-Bloch dispersion surfaces, when appropriately rescaled, are uniformly close to those of the celebrated two-band tight-binding model, introduced by PR Wallace (1947) in his pioneering study of graphite. We then discuss corollaries, in the strong binding regime, on (a) spectral gaps for honeycomb potentials with PT symmetry-breaking perturbations, and (b) topologically protected edge states for honeycomb structures with "rational edges. This is joint work with CL Fefferman and JP Lee-Thorp. Extensions to Maxwell equations (with Y Zhu and JP Lee-Thorp) will also be discussed. We discuss the 2D Schrödinger equation for periodic potentials with the symmetry of a hexagonal tiling of the plane. We first review joint work with CL Fefferman on the existence of Dirac points, conical singularities in the band structure, and the resulting effective 2D Dirac dynamics of wave-packets. We then focus on periodic potentials which are superpositions of localized potential wells, centered on the vertices of a regular honeycomb ...

35J10 ; 35B32 ; 35Q41 ; 37G40

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Partial Differential Equations

I will present two cases of strong interactions between solitary waves for the nonlinear Schrödinger equations (NLS). In the mass sub- and super-critical cases, a work by Tien Vinh Nguyen proves the existence of multi-solitary waves with logarithmic distance in time, extending a classical result of the integrable case (1D cubic NLS equation). In the mass-critical case, a work by Yvan Martel and Pierre Raphaël gives a new class of blow up multi-solitary waves blowing up in infinite time with logarithmic rate.
These special behaviours are due to strong interactions between the waves, in contrast with most previous works on multi-solitary waves of (NLS) where interactions do not affect the general behaviour of each solitary wave.
I will present two cases of strong interactions between solitary waves for the nonlinear Schrödinger equations (NLS). In the mass sub- and super-critical cases, a work by Tien Vinh Nguyen proves the existence of multi-solitary waves with logarithmic distance in time, extending a classical result of the integrable case (1D cubic NLS equation). In the mass-critical case, a work by Yvan Martel and Pierre Raphaël gives a new class of blow up ...

35Q55 ; 76B25 ; 35Q51 ; 35C08

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Partial Differential Equations

We consider the Derivative Nonlinear Schrödinger equation for general initial conditions in weighted Sobolev spaces that can support bright solitons (but exclude spectral singularities). We prove global wellposedness and give a full description of the long-time behavior of the solutions in the form of a finite sum of localized solitons and a dispersive component. Our analysis provides explicit formulae for the multi-soliton component as well as the correction dispersive term. We use the inverse scattering approach and the nonlinear steepest descent method of Deift and Zhou (1993) revisited by the $\bar{\partial}$-analysis of Dieng-McLaughlin (2008) and complemented by the recent work of Borghese-Jenkins-McLaughlin (2016) on soliton resolution for the focusing nonlinear Schrödinger equation. This is a joint work with R. Jenkins, J. Liu and P. Perry. We consider the Derivative Nonlinear Schrödinger equation for general initial conditions in weighted Sobolev spaces that can support bright solitons (but exclude spectral singularities). We prove global wellposedness and give a full description of the long-time behavior of the solutions in the form of a finite sum of localized solitons and a dispersive component. Our analysis provides explicit formulae for the multi-soliton component as well as ...

35Q55 ; 37K15 ; 37K40 ; 35P25 ; 35A01

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Mathematical Physics

We propose a platform for finding the global minimum of XY Hamiltonian with polariton graphs. We derive an approximate analytic solution to the spinless complex Ginzburg-Landau equation that describes the density and kinetics of a polariton condensate under incoherent pumping. The analytic expression of the wavefunction is used as the building block for constructing the XY Hamiltonian of two-dimensional polariton graphs. We illustrate examples of the quantum simulator for various classical magnetic phases on some simple lattice geometries: linear, triangular, square. We propose a platform for finding the global minimum of XY Hamiltonian with polariton graphs. We derive an approximate analytic solution to the spinless complex Ginzburg-Landau equation that describes the density and kinetics of a polariton condensate under incoherent pumping. The analytic expression of the wavefunction is used as the building block for constructing the XY Hamiltonian of two-dimensional polariton graphs. We illustrate examples ...

82B20 ; 81T80 ; 35Q56

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Partial Differential Equations

The class of commutator-free Magnus integrators is known to provide a favourable alternative to standard interpolatory Magnus integrators, in particular for large-scale applications arising in the time integration of non-autonomous linear evolution equations. A high-order commutator-free Magnus integrator is given by a composition of several exponentials that comprise certain linear combinations of the values of the defining operator at specified nodes. Due to the fact that previously proposed commutator-free Magnus integrators of order five or higher involve negative coefficients in the linear combinations, severe instabilities are observed for spatially semi-discretised partial differential equations of parabolic type or for master equations describing dissipative quantum systems, respectively. In order to remedy this issue, two different approaches for the design of efficient Magnus integrators of orders four, five, and six are pursued: (i) the study of commutator-free Magnus integrators involving complex coefficients with positive real part, and (ii) the study of unconventional Magnus integrators that comprise in addition a single exponential involving a commutator. Numerical experiments for test equations of Schrödinger and parabolic type confirm that the identified novel Magnus integrators are superior to Magnus integrators previously proposed in the literature. The class of commutator-free Magnus integrators is known to provide a favourable alternative to standard interpolatory Magnus integrators, in particular for large-scale applications arising in the time integration of non-autonomous linear evolution equations. A high-order commutator-free Magnus integrator is given by a composition of several exponentials that comprise certain linear combinations of the values of the defining operator at ...

35Q41 ; 65M12

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Partial Differential Equations;Mathematical Physics

The leapfrogging is the name given to a regime of interaction between vortex rings with the same axis of symmetry in incompressible fluids. We will explain where it comes from and indicate a rigorous derivation in the case of the axisymmetric Gross-Pitaevskii equation.

35Q55 ; 35Q56 ; 76B47

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Mathematical Physics

Superfluids are remarkable because they lack mechanisms of viscous dissipations, and because vorticity is concentrated in thin vortex lines - a property which arises from the existence and uniqueness of a macroscopic wave function. In this talk I shall review recent experiments and numerical simulations which reveal analogies and differences between the flow of ordinary fluids and the flow of superfluids. In particular, I shall describe conditions under which, in a homogeneous isotropic turbulent superfluid away from boundaries, the distribution of kinetic energy over the length scales is similar to the classical Kolmogorov distribution, and new insight into the properties of superfluid flow near boundaries. Superfluids are remarkable because they lack mechanisms of viscous dissipations, and because vorticity is concentrated in thin vortex lines - a property which arises from the existence and uniqueness of a macroscopic wave function. In this talk I shall review recent experiments and numerical simulations which reveal analogies and differences between the flow of ordinary fluids and the flow of superfluids. In particular, I shall describe ...

82D50 ; 76A25 ; 76B47

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- xi; 243 p.
ISBN 978-981-279-312-6

Localisation : Ouvrage RdC (CARL)

équation non-linéaire de Schrödinger # EDP # technique semi-classique en théorie quantique # approximation de WBK # équation de Gross-Pitaevskii

35Q55 ; 35-02 ; 81Q20

... Lire [+]

Z