Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Research talks;Control Theory and Optimization
We review basic properties of the moment-LP and moment-SOS hierarchies for polynomial optimization and compare them. We also illustrate how to use such a methodology in two applications outside optimization. Namely :
- for approximating (as claosely as desired in a strong sens) set defined with quantifiers of the form
$R_1 =\{ x\in B : f(x,y)\leq 0 $ for all $y$ such that $(x,y) \in K \}$.
$D_1 =\{ x\in B : f(x,y)\leq 0 $ for some $y$ such that $(x,y) \in K \}$.
by a hierarchy of inner sublevel set approximations
$\Theta_k = \left \{ x\in B : J_k(x)\leq 0 \right \}\subset R_f$.
or outer sublevel set approximations
$\Theta_k = \left \{ x\in B : J_k(x)\leq 0 \right \}\supset D_f$.
for some polynomiales $(J_k)$ of increasing degree :
- for computing convex polynomial underestimators of a given polynomial $f$ on a box $B \subset R^n$.
We review basic properties of the moment-LP and moment-SOS hierarchies for polynomial optimization and compare them. We also illustrate how to use such a methodology in two applications outside optimization. Namely :
- for approximating (as claosely as desired in a strong sens) set defined with quantifiers of the form
$R_1 =\{ x\in B : f(x,y)\leq 0 $ for all $y$ such that $(x,y) \in K \}$.
$D_1 =\{ x\in B : f(x,y)\leq 0 $ for ...
44A60 ; 90C22
... Lire [+]
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Research talks;Partial Differential Equations;Mathematical Physics
We consider the 1-D Schrödinger system with point vortex-type interactions that was derived by R. Klein, A. Majda and K. Damodaran and by V. Zakharov to modelize the dynamics of N nearly parallel vortex filaments in a 3-D incompressible fluid. We first prove a global in time result and display several classes of solutions. Then we consider the problem of collisions. In particular we establish rigorously the existence of a pair of almost parallel vortex filaments, with opposite circulation, colliding at some point in finite time. These results are joint works with E. Faou and E. Miot.
We consider the 1-D Schrödinger system with point vortex-type interactions that was derived by R. Klein, A. Majda and K. Damodaran and by V. Zakharov to modelize the dynamics of N nearly parallel vortex filaments in a 3-D incompressible fluid. We first prove a global in time result and display several classes of solutions. Then we consider the problem of collisions. In particular we establish rigorously the existence of a pair of almost parallel ...
35Q35 ; 76B47
... Lire [+]
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
- xxxiv; 162 p.
ISBN 978-2-85629-769-8
Panoramas et synthèses , 0038
Localisation : Collection 1er étage
Capillarité # surface capillaire # point de rebroussement # évolution des surfaces # singularités en temps fini # mécanique des fluides # problèmes à frontières libres # surfaces libres # homogénéisation # interfaces # Kelvin-Helmholtz # équation non linéaire de Schrödinger # interfaces non linéaires de Schrödinger # Rayleigh-Taylor # autosimilarité # singularités # couches minces # filaments de vorticité # vagues
35-02 ; 35A20 ; 35A21 ; 35B27 ; 35B35 ; 35B65 ; 37D50 ; 35J67 ; 35K35 ; 35L80 ; 35Q35 ; 35Q55 ; 35R35 ; 37K10 ; 58K35 ; 58Z05 ; 74Q05 ; 76B03 ; 76B15 ; 76B45 ; 76B47 ; 76D08 ; 76F20
... Lire [+]