m

F Nous contacter

0

Documents  Pazuki, Fabien | enregistrements trouvés : 2

O
     

-A +A

P Q

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Algebra;Number Theory

Rational points on smooth projective curves of genus $g \ge 2$ over number fields are in finite number thanks to a theorem of Faltings from 1983. The same result was known over function fields of positive characteristic since 1966 thanks to a theorem of Samuel. The aim of the talk is to give a bound as uniform as possible on this number for curves defined over such fields. In a first part we will report on a result by Rémond concerning the number field case and on a way to strengthen it assuming a height conjecture. During the second part we will focus on function fields of positive characteristic and describe a new result obtained in a joined work with Pacheco. Rational points on smooth projective curves of genus $g \ge 2$ over number fields are in finite number thanks to a theorem of Faltings from 1983. The same result was known over function fields of positive characteristic since 1966 thanks to a theorem of Samuel. The aim of the talk is to give a bound as uniform as possible on this number for curves defined over such fields. In a first part we will report on a result by Rémond concerning the ...

14G05 ; 11G35

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks

In a recent collaboration with Pascal Autissier and Marc Hindry, we prove that up to isomorphisms, there are at most finitely many elliptic curves defined over a fixed number field, with Mordell-Weil rank and regulator bounded from above, and rank at least 4.

11G50 ; 14G40

... Lire [+]

Z