m

F Nous contacter

0

Documents  Lassas, Matti | enregistrements trouvés : 4

O
     

-A +A

P Q

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools;Partial Differential Equations

This is a survey talk about the Boundary Control method. The method originates from the work by Belishev in 1987. He developed the method to solve the inverse boundary value problem for the acoustic wave equation with an isotropic sound speed. The method has proven to be very versatile and it has been applied to various inverse problems for hyperbolic partial differential equations. We review recent results based on the method and explain how a geometric version of method works in the case of the wave equation for the Laplace-Beltrami operator on a compact Riemannian manifold with boundary. This is a survey talk about the Boundary Control method. The method originates from the work by Belishev in 1987. He developed the method to solve the inverse boundary value problem for the acoustic wave equation with an isotropic sound speed. The method has proven to be very versatile and it has been applied to various inverse problems for hyperbolic partial differential equations. We review recent results based on the method and explain how a ...

35R30 ; 35L05 ; 35L20

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools;Partial Differential Equations


inverse problem - reconstruction - regularization - tomography - computation

65N21 ; 65N20 ; 35R25

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research schools;Partial Differential Equations


inverse problem - reconstruction - regularization - tomography - computation

65N21 ; 65N20 ; 35R25

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- 290 p.
ISBN 978-1-58488-005-9

Monographs and surveys in pure and applied mathematics , 0123

Localisation : Ouvrage RdC (KATC)

problème inverse # problème aux limites # données spectrales # variété riemannienne connectée # opérateur de Schrödinger # géométrie riemannienne # faisceau gaussien # équation de vague # unicité

35R30 ; 58J50 ; 35-02 ; 93B30 ; 65N21

... Lire [+]

Z