m

F Nous contacter

0

Documents  Faure, Frédéric | enregistrements trouvés : 3

O
     

-A +A

P Q

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks

In the 80’s, D. Ruelle, D. Bowen and others have introduced probabilistic and spectral methods in order to study deterministic chaos (”Ruelle resonances”). For a geodesic flow on a strictly negative curvature Riemannian manifold, following this approach and use of microlocal analysis, one obtains that long time fluctuations of classical probabilities are described by an effective quantum wave equation. This may be surprising because there is no added quantization procedure. We will discuss consequences for the zeros of dynamical zeta functions. This shows that the problematic of classical chaos and quantum chaos are closely related. Joint work with Masato Tsujii. In the 80’s, D. Ruelle, D. Bowen and others have introduced probabilistic and spectral methods in order to study deterministic chaos (”Ruelle resonances”). For a geodesic flow on a strictly negative curvature Riemannian manifold, following this approach and use of microlocal analysis, one obtains that long time fluctuations of classical probabilities are described by an effective quantum wave equation. This may be surprising because there is no ...

37D20 ; 37D35 ; 81Q50 ; 81S10

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Research talks;Partial Differential Equations;Dynamical Systems and Ordinary Differential Equations;Mathematical Physics

Hyperbolic (Anosov or Axiom A) flows have discrete Ruelle spectrum. For contact Anosov flows, e.g. geodesic flows, where a smooth contact one form is preserved, the trapped set is a smooth symplectic manifold, normally hyperbolic, and M. Tsujii, S. Nonnenmacher and M. Zworski, have given an estimate for the asymptotic spectral gap, i.e. that appears in the limit of high frequencies in the flow direction. We will propose a different approach that may improve this estimate. This will be presented on a simple toy model, partially expanding maps. Work with Tobias Weich. Hyperbolic (Anosov or Axiom A) flows have discrete Ruelle spectrum. For contact Anosov flows, e.g. geodesic flows, where a smooth contact one form is preserved, the trapped set is a smooth symplectic manifold, normally hyperbolic, and M. Tsujii, S. Nonnenmacher and M. Zworski, have given an estimate for the asymptotic spectral gap, i.e. that appears in the limit of high frequencies in the flow direction. We will propose a different approach that ...

37C30 ; 37D20 ; 58J50

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- ix; 222 p.
ISBN 978-2-85629-823-7

Astérisque , 0375

Localisation : Périodique 1er étage

opérateurs de transfert # résonances de Ruelle # décroissance des corrélations # analyse semi-classique

37D20 ; 37D35 ; 37C30 ; 81Q20 ; 81Q50

... Lire [+]

Z