m

Documents  46B85 | enregistrements trouvés : 6

O
     

-A +A

P Q

Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Déposez votre fichier ici pour le déplacer vers cet enregistrement.

Exploring the relations between algebraic and geometric properties of a group and the geometry of the Banach spaces on which it can act is a fascinating program, still widely mysterious, and which is tightly connected to coarse embeddability of graphs into Banach spaces. I will present a recent contribution, joint with Tim de Laat, where we give a spectral (hilbertian) criterion for fixed point properties on uniformly curved Banach spaces.

46B85 ; 20F65 ; 47H10

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

The study of groups often sheds light on problems in various areas of mathematics. Whether playing the role of certain invariants in topology, or encoding symmetries in geometry, groups help us understand many mathematical objects in greater depth. In coarse geometry, one can use groups to construct examples or counterexamples with interesting or surprising properties. In this talk, we will introduce one such metric object arising from finite quotients of finitely generated groups, and survey some of its useful properties and associated constructions. The study of groups often sheds light on problems in various areas of mathematics. Whether playing the role of certain invariants in topology, or encoding symmetries in geometry, groups help us understand many mathematical objects in greater depth. In coarse geometry, one can use groups to construct examples or counterexamples with interesting or surprising properties. In this talk, we will introduce one such metric object arising from finite ...

46B85 ; 20F65 ; 20F69

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

In a recent paper, the speaker and M.I. Ostrovskii developed a new metric embedding method based on the theory of equal-signs-additive (ESA) sequences developed by Brunel and Sucheston in 1970’s. This method was used to construct bilipschitz embeddings of diamond and Laakso graphs with an arbitrary finite number of branches into any non-superreflexive Banach space with a uniform bound on distortions that is independent of the number of branches.
In this talk we will outline a proof that the above mentioned embeddability results cannot be obtained using the embedding method which was used for trees by Bourgain (1986) and for binary branching diamonds and Laakso graphs by Johnson and Schechtman (2009), and which is based on a classical James’ characterization of superreflexivity (the factorization between the summing basis and the unit vector basis of $\ell_1$). Our proof uses a “self-improvement” argument and the Ramsey theorem.
Joint work with M.I. Ostrovskii.
In a recent paper, the speaker and M.I. Ostrovskii developed a new metric embedding method based on the theory of equal-signs-additive (ESA) sequences developed by Brunel and Sucheston in 1970’s. This method was used to construct bilipschitz embeddings of diamond and Laakso graphs with an arbitrary finite number of branches into any non-superreflexive Banach space with a uniform bound on distortions that is independent of the number of ...

46B85 ; 05C12 ; 30L05 ; 46B07 ; 46B10

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- xi; 599 p.
ISBN 978-2-85629-930-2

Astérisque , 0422

Localisation : Périodique 1er étage

réseau euclidien # série thêta # pente # théorie du pluripotentiel # géométrie kählerienne # équidistribution # grande déviation # graphe régulier aléatoire # vecteur propre # fonction propre aléatoire gaussienne # théorie de la petite simplification # groupe non exact # plongement grossier # propriété de Haagerup # géométrie arithmétique sur les corps finis # faisceaux p-adiques # isocristaux # motif # représentation automorphe # groupe discret # représentation de Koopman # variété de Fano # groupe de Cremona # espace de modules # variété stable # géométrie birationnelle # singularité # sous-groupe discret de groupe de Lie semi-simple # représentation d'Anosov # schéma de Hilbert # algèbre de Skein # fonction zeta de Riemann # produit de Euler # valeur large # conjecture de Fyodorov-Hiary-Keating # corrélation logarithmique # percolation # transition de phase abrupte # décroissance exponentielle # algorithme randomisé # triangulation # groupe de cobordisme homologique # invariant de Seiberg-Witten # espace de Hurwitz # stabilité homologique # dualité de Koszul # surface minimale # géodésique # méthode de minmax en géométrie # spectre non linéaire # largeur de Gromov # loi de Weyl non linéaire # varifold stationnaire presque minimisant # surface minimale à bords libres # conjecture de Yau sur les surfaces minimales réseau euclidien # série thêta # pente # théorie du pluripotentiel # géométrie kählerienne # équidistribution # grande déviation # graphe régulier aléatoire # vecteur propre # fonction propre aléatoire gaussienne # théorie de la petite simplification # groupe non exact # plongement grossier # propriété de Haagerup # géométrie arithmétique sur les corps finis # faisceaux p-adiques # isocristaux # motif # représentation automorphe # groupe discret ...

11F27 ; 11H31 ; 94B75 ; 32U15 ; 32U20 ; 32Q15 ; 32L05 ; 60G55 ; 05C80 ; 60B20 ; 20F69 ; 20F06 ; 46B85 ; 20F65 ; 05C25 ; 14F20 ; 46L35 ; 37A55 ; 43A07 ; 14J45 ; 14E30 ; 14C20 ; 14E05 ; 14E07

... Lire [+]

Déposez votre fichier ici pour le déplacer vers cet enregistrement.

- xi; 372 p.
ISBN 978-3-11-026340-4

Studies in mathematics , 0049

Localisation : Ouvrage RdC (OSTR)

plongement de Lipschitz # plongement grossier # espace de Banach # espace métrique # expandeur # équation aux dérivées partielles stochastiques # espace topologique # topologie de l'espace métrique

46-02 ; 46B85 ; 05C12 ; 54E35 ; 46B80

... Lire [+]

Z