Déposez votre fichier ici pour le déplacer vers cet enregistrement.
Research talks;Algebra;Combinatorics
We present a new approach to affine Deligne Lusztig varieties which allows us to study the so called "non-basic" case in a type free manner. The central idea is to translate the question of non-emptiness and the computation of the dimensions of these varieties into geometric questions in the Bruhat-Tits building. All boils down to understand existence of certain positively folded galleries in affine Coxeter complexes. To do so, we explicitly construct such galleries and use, among other techniques, the root operators introduced by Gaussent and Littelmann to manipulate them.
We present a new approach to affine Deligne Lusztig varieties which allows us to study the so called "non-basic" case in a type free manner. The central idea is to translate the question of non-emptiness and the computation of the dimensions of these varieties into geometric questions in the Bruhat-Tits building. All boils down to understand existence of certain positively folded galleries in affine Coxeter complexes. To do so, we explicitly ...
14L30 ; 14M15 ; 20G05
... Lire [+]
Déposez votre fichier ici pour le déplacer vers cet enregistrement.
- v; 101 p.
ISBN 978-1-4704-3676-6
Memoirs of the American Mathematical Society , 1260
Localisation : Collection 1er étage
groupe de Weyl # variété affine de Deligne-Lusztig # groupe géométrique # représentation combinatoire # algèbre de Hecke
20G25 ; 05E10 ; 20F55 ; 51E24
... Lire [+]